May 19, 2023
Similar papers 5
March 23, 2021
Atomic Switch Networks (ASN) comprising silver iodide (AgI) junctions, a material previously unexplored as functional memristive elements within highly-interconnected nanowire networks, were employed as a neuromorphic substrate for physical Reservoir Computing (RC). This new class of ASN-based devices has been physically characterized and utilized to classify spoken digit audio data, demonstrating the utility of substrate-based device architectures where intrinsic material pr...
December 8, 2018
We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their...
December 11, 2023
Speech recognition is a critical task in the field of artificial intelligence and has witnessed remarkable advancements thanks to large and complex neural networks, whose training process typically requires massive amounts of labeled data and computationally intensive operations. An alternative paradigm, reservoir computing, is energy efficient and is well adapted to implementation in physical substrates, but exhibits limitations in performance when compared to more resource-...
March 28, 2024
The human brain has immense learning capabilities at extreme energy efficiencies and scale that no artificial system has been able to match. For decades, reverse engineering the brain has been one of the top priorities of science and technology research. Despite numerous efforts, conventional electronics-based methods have failed to match the scalability, energy efficiency, and self-supervised learning capabilities of the human brain. On the other hand, very recent progress i...
July 6, 2022
Physical reservoir computing has recently been attracting attention for its ability to significantly reduce the computational resources required to process time-series data. However, the physical reservoirs that have been reported to date have had insufficient expression power, and most of them have a large volume, which makes their practical application difficult. Herein we describe the development of a Li+-electrolyte based ion-gating reservoir (IGR), with ion-electron coup...
July 1, 2015
Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. Neuromorphic engineering promises extremely low energy consumptions, comparable to those of the nervous system. However, until now the neuromorphic approach has been restricted to relatively simple circuits and specialized functi...
January 25, 2020
The computational efficiency of the human brain is believed to stem from the parallel information processing capability of neurons with integrated storage in synaptic interconnections programmed by local spike triggered learning rules such as spike timing dependent plasticity (STDP). The extremely low operating voltages (approximately $100\,$mV) used to trigger neuronal signaling and synaptic adaptation is believed to be a critical reason for the brain's power efficiency. We ...
December 19, 2023
Exploring nonlinear chemical dynamic systems for information processing has emerged as a frontier in chemical and computational research, seeking to replicate the brain's neuromorphic and dynamic functionalities. We have extensively explored the information processing capabilities of a nonlinear chemical dynamic system through theoretical modeling by integrating a non-steady-state proton-coupled charge transport system into reservoir computing (RC) architecture. Our system de...
June 22, 2020
Neuromorphic systems that learn and predict from streaming inputs hold significant promise in pervasive edge computing and its applications. In this paper, a neuromorphic system that processes spatio-temporal information on the edge is proposed. Algorithmically, the system is based on hierarchical temporal memory that inherently offers online learning, resiliency, and fault tolerance. Architecturally, it is a full custom mixed-signal design with an underlying digital communic...
August 7, 2023
Digital computers have been getting exponentially faster for decades, but huge challenges exist today. Transistor scaling, described by Moore's law, has been slowing down over the last few years, ending the era of fully predictable performance improvements. Furthermore, the data-centric computing demands fueled by machine learning applications are rapidly growing, and current computing systems -- even with the historical rate of improvements driven by Moore's law -- cannot ke...