June 7, 2023
The Kronecker coefficients are the decomposition multiplicities of the tensor product of two irreducible representations of the symmetric group. Unlike the Littlewood--Richardson coefficients, which are the analogues for the general linear group, there is no known combinatorial description of the Kronecker coefficients, and it is an NP-hard problem to decide whether a given Kronecker coefficient is zero or not. In this paper, we show that standard machine-learning algorithms such as Nearest Neighbors, Convolutional Neural Networks and Gradient Boosting Decision Trees may be trained to predict whether a given Kronecker coefficient is zero or not. Our results show that a trained machine can efficiently perform this binary classification with high accuracy ($\approx 0.98$).
Similar papers 1
February 17, 2025
We analyze the saliency of neural networks and employ interpretable machine learning models to predict whether the Kronecker coefficients of the symmetric group are zero or not. Our models use triples of partitions as input features, as well as b-loadings derived from the principal component of an embedding that captures the differences between partitions. Across all approaches, we achieve an accuracy of approximately 83% and derive explicit formulas for a decision function i...
November 2, 2020
Classical and exceptional Lie algebras and their representations are among the most important tools in the analysis of symmetry in physical systems. In this letter we show how the computation of tensor products and branching rules of irreducible representations are machine-learnable, and can achieve relative speed-ups of orders of magnitude in comparison to the non-ML algorithms.
January 15, 2021
We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more eff...
December 8, 2023
In this work we employ machine learning to understand structured mathematical data involving finite groups and derive a theorem about necessary properties of generators of finite simple groups. We create a database of all 2-generated subgroups of the symmetric group on n-objects and conduct a classification of finite simple groups among them using shallow feed-forward neural networks. We show that this neural network classifier can decipher the property of simplicity with var...
July 24, 2024
Kostka, Littlewood-Richardson, Plethysm and Kronecker coefficients are multiplicities of irreducible representations (irreps) of the symmetric group in restrictions and products of irreps. They play an important role in representation theory and are notoriously hard to compute. We give quantum algorithms that efficiently compute these coefficients whenever the ratio of dimensions of the representations is polynomial. Using that the Kostka numbers admit combinatorial interpret...
February 27, 2025
Littlewood-Richardson, Kronecker and plethysm coefficients are fundamental multiplicities of interest in Representation Theory and Algebraic Combinatorics. Determining a combinatorial interpretation for the Kronecker and plethysm coefficients is a major open problem, and prompts the consideration of their computational complexity. Recently it was shown that they behave relatively well with respect to quantum computation, and for some large families there are polynomial time q...
June 30, 2023
Algebraic Combinatorics originated in Algebra and Representation Theory, studying their discrete objects and integral quantities via combinatorial methods which have since developed independent and self-contained lives and brought us some beautiful formulas and combinatorial interpretations. The flagship hook-length formula counts the number of Standard Young Tableaux, which also gives the dimension of the irreducible Specht modules of the Symmetric group. The elegant Littlew...
May 30, 2017
Machine learning and pattern recognition techniques have been successfully applied to algorithmic problems in free groups. In this paper, we seek to extend these techniques to finitely presented non-free groups, with a particular emphasis on polycyclic and metabelian groups that are of interest to non-commutative cryptography. As a prototypical example, we utilize supervised learning methods to construct classifiers that can solve the conjugacy decision problem, i.e., deter...
February 12, 2025
Can machine learning help discover new mathematical structures? In this article we discuss an approach to doing this which one can call "mathematical data science". In this paradigm, one studies mathematical objects collectively rather than individually, by creating datasets and doing machine learning experiments and interpretations. After an overview, we present two case studies: murmurations in number theory and loadings of partitions related to Kronecker coefficients in re...
September 29, 2023
There has been recent interest in novel Clifford geometric invariants of linear transformations. This motivates the investigation of such invariants for a certain type of geometric transformation of interest in the context of root systems, reflection groups, Lie groups and Lie algebras: the Coxeter transformations. We perform exhaustive calculations of all Coxeter transformations for $A_8$, $D_8$ and $E_8$ for a choice of basis of simple roots and compute their invariants, us...