September 29, 2023
There has been recent interest in novel Clifford geometric invariants of linear transformations. This motivates the investigation of such invariants for a certain type of geometric transformation of interest in the context of root systems, reflection groups, Lie groups and Lie algebras: the Coxeter transformations. We perform exhaustive calculations of all Coxeter transformations for $A_8$, $D_8$ and $E_8$ for a choice of basis of simple roots and compute their invariants, using high-performance computing. This computational algebra paradigm generates a dataset that can then be mined using techniques from data science such as supervised and unsupervised machine learning. In this paper we focus on neural network classification and principal component analysis. Since the output -- the invariants -- is fully determined by the choice of simple roots and the permutation order of the corresponding reflections in the Coxeter element, we expect huge degeneracy in the mapping. This provides the perfect setup for machine learning, and indeed we see that the datasets can be machine learned to very high accuracy. This paper is a pump-priming study in experimental mathematics using Clifford algebras, showing that such Clifford algebraic datasets are amenable to machine learning, and shedding light on relationships between these novel and other well-known geometric invariants and also giving rise to analytic results.
Similar papers 1
Quaternionic representations of Coxeter (reflection) groups of ranks 3 and 4, as well as those of E_8, have been used extensively in the literature. The present paper analyses such Coxeter groups in the Clifford Geometric Algebra framework, which affords a simple way of performing reflections and rotations whilst exposing more clearly the underlying geometry. The Clifford approach shows that the quaternionic representations in fact have very simple geometric interpretations. ...
March 25, 2022
Cluster algebras have recently become an important player in mathematics and physics. In this work, we investigate them through the lens of modern data science, specifically with techniques from network science and machine-learning. Network analysis methods are applied to the exchange graphs for cluster algebras of varying mutation types. The analysis indicates that when the graphs are represented without identifying by permutation equivalence between clusters an elegant symm...
November 2, 2020
Classical and exceptional Lie algebras and their representations are among the most important tools in the analysis of symmetry in physical systems. In this letter we show how the computation of tensor products and branching rules of irreducible representations are machine-learnable, and can achieve relative speed-ups of orders of magnitude in comparison to the non-ML algorithms.
February 18, 2016
This paper considers the geometry of $E_8$ from a Clifford point of view in three complementary ways. Firstly, in earlier work, I had shown how to construct the four-dimensional exceptional root systems from the 3D root systems using Clifford techniques, by constructing them in the 4D even subalgebra of the 3D Clifford algebra; for instance the icosahedral root system $H_3$ gives rise to the largest (and therefore exceptional) non-crystallographic root system $H_4$. Arnold's ...
May 18, 2023
We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing $\mathrm{O}(n)$- and $\mathrm{E}(n)$-equivariant models. We identify and study the $\textit{Clifford group}$, a subgroup inside the Clifford algebra tailored to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This lead...
April 12, 2022
In this paper we discuss reflection groups and root systems, in particular non-crystallographic ones, and a Clifford algebra framework for both these concepts. A review of historical as well as more recent work on viral capsid symmetries motivates the focus on the icosahedral root system $H_3$. We discuss a notion of affine extension for non-crystallographic groups with applications to fullerenes and viruses. The icosahedrally ordered component of the nucleic acid within the ...
We approach the well-studied problem of supervised group invariant and equivariant machine learning from the point of view of geometric topology. We propose a novel approach using a pre-processing step, which involves projecting the input data into a geometric space which parametrises the orbits of the symmetry group. This new data can then be the input for an arbitrary machine learning model (neural network, random forest, support-vector machine etc). We give an algorithm ...
June 7, 2023
The Kronecker coefficients are the decomposition multiplicities of the tensor product of two irreducible representations of the symmetric group. Unlike the Littlewood--Richardson coefficients, which are the analogues for the general linear group, there is no known combinatorial description of the Kronecker coefficients, and it is an NP-hard problem to decide whether a given Kronecker coefficient is zero or not. In this paper, we show that standard machine-learning algorithms ...
February 18, 2016
In this paper, we make the case that Clifford algebra is the natural framework for root systems and reflection groups, as well as related groups such as the conformal and modular groups: The metric that exists on these spaces can always be used to construct the corresponding Clifford algebra. Via the Cartan-Dieudonn\'e theorem all the transformations of interest can be written as products of reflections and thus via `sandwiching' with Clifford algebra multivectors. These mult...
September 29, 2022
Inspired by constraints from physical law, equivariant machine learning restricts the learning to a hypothesis class where all the functions are equivariant with respect to some group action. Irreducible representations or invariant theory are typically used to parameterize the space of such functions. In this article, we introduce the topic and explain a couple of methods to explicitly parameterize equivariant functions that are being used in machine learning applications. I...