June 7, 2023
Similar papers 3
May 2, 2019
We employ techniques of machine-learning, exemplified by support vector machines and neural classifiers, to initiate the study of whether AI can "learn" algebraic structures. Using finite groups and finite rings as a concrete playground, we find that questions such as identification of simple groups by "looking" at the Cayley table or correctly matching addition and multiplication tables for finite rings can, at least for structures of small size, be performed by the AI, even...
May 4, 2023
We settle the question of where exactly the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of a question by Stanley from 2000 and a question by Kirillov from 2004 about combinatorial interpretations of these two families of coefficients. Moreover...
June 18, 2017
In this paper, we exhibit the tradeoffs between the (training) sample, computation and storage complexity for the problem of supervised classification using signal subspace estimation. Our main tool is the use of tensor subspaces, i.e. subspaces with a Kronecker structure, for embedding the data into lower dimensions. Among the subspaces with a Kronecker structure, we show that using subspaces with a hierarchical structure for representing data leads to improved tradeoffs. On...
September 24, 2020
Neural network-based machine learning is capable of approximating functions in very high dimension with unprecedented efficiency and accuracy. This has opened up many exciting new possibilities, not just in traditional areas of artificial intelligence, but also in scientific computing and computational science. At the same time, machine learning has also acquired the reputation of being a set of "black box" type of tricks, without fundamental principles. This has been a real ...
October 12, 2017
A fundamental problem in the representation theory of the symmetric group, Sn, is to describe the coefficients in the decomposition of a tensor product of two simple representations. These coefficients are known in the literature as the Kronecker coefficients. The Littlewood--Richardson coefficients appear as an important subfamily of the wider class of stable Kronecker coefficients. This subfamily of coefficients can be calculated using a tableaux counting algorithm known as...
November 23, 2020
In this paper, we develop a new technique which we call representation theory of the real hyperrectangle, which describes how to compute the eigenvectors and eigenvalues of certain matrices arising from hyperrectangles. We show that these matrices arise naturally when analyzing a number of different algorithmic tasks such as kernel methods, neural network training, natural language processing, and the design of algorithms using the polynomial method. We then use our new techn...
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
April 8, 2022
Deep learning using neural networks is an effective technique for generating models of complex data. However, training such models can be expensive when networks have large model capacity resulting from a large number of layers and nodes. For training in such a computationally prohibitive regime, dimensionality reduction techniques ease the computational burden, and allow implementations of more robust networks. We propose a novel type of such dimensionality reduction via a n...
April 19, 2012
For fixed compact connected Lie groups H \subseteq G, we provide a polynomial time algorithm to compute the multiplicity of a given irreducible representation of H in the restriction of an irreducible representation of G. Our algorithm is based on a finite difference formula which makes the multiplicities amenable to Barvinok's algorithm for counting integral points in polytopes. The Kronecker coefficients of the symmetric group, which can be seen to be a special case of su...
November 19, 2021
Kernel matrices are crucial in many learning tasks such as support vector machines or kernel ridge regression. The kernel matrix is typically dense and large-scale. Depending on the dimension of the feature space even the computation of all of its entries in reasonable time becomes a challenging task. For such dense matrices the cost of a matrix-vector product scales quadratically with the dimensionality N , if no customized methods are applied. We propose the use of an ANOVA...