January 29, 2018
We describe an algorithm for splitting permutation representations of finite group over fields of characteristic zero into irreducible components. The algorithm is based on the fact that the components of the invariant inner product in invariant subspaces are operators of projection into these subspaces. An important element of the algorithm is the calculation of Gr\"obner bases of polynomial ideals. A preliminary implementation of the algorithm splits representations up to d...
July 16, 2023
In this paper we describe a deep learning--based probabilistic algorithm for integer factorisation. We use Lawrence's extension of Fermat's factorisation algorithm to reduce the integer factorisation problem to a binary classification problem. To address the classification problem, based on the ease of generating large pseudo--random primes, a corpus of training data, as large as needed, is synthetically generated. We will introduce the algorithm, summarise some experiments, ...
March 8, 2022
This work proposes a novel general-purpose estimator for supervised machine learning (ML) based on tensor trains (TT). The estimator uses TTs to parametrize discretized functions, which are then optimized using Riemannian gradient descent under the form of a tensor completion problem. Since this optimization is sensitive to initialization, it turns out that the use of other ML estimators for initialization is crucial. This results in a competitive, fast ML estimator with lowe...
June 8, 2021
Kernel methods are a highly effective and widely used collection of modern machine learning algorithms. A fundamental limitation of virtually all such methods are computations involving the kernel matrix that naively scale quadratically (e.g., constructing the kernel matrix and matrix-vector multiplication) or cubically (solving linear systems) with the size of the data set $N.$ We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplic...
September 16, 2021
We introduce machine learning methodology to the study of lattice polytopes. With supervised learning techniques, we predict standard properties such as volume, dual volume, reflexivity, etc, with accuracies up to 100%. We focus on 2d polygons and 3d polytopes with Pl\"ucker coordinates as input, which out-perform the usual vertex representation.
November 30, 2020
Deep learning's successes are often attributed to its ability to automatically discover new representations of the data, rather than relying on handcrafted features like other learning methods. We show, however, that deep networks learned by the standard gradient descent algorithm are in fact mathematically approximately equivalent to kernel machines, a learning method that simply memorizes the data and uses it directly for prediction via a similarity function (the kernel). T...
September 29, 2022
Inspired by constraints from physical law, equivariant machine learning restricts the learning to a hypothesis class where all the functions are equivariant with respect to some group action. Irreducible representations or invariant theory are typically used to parameterize the space of such functions. In this article, we introduce the topic and explain a couple of methods to explicitly parameterize equivariant functions that are being used in machine learning applications. I...
February 12, 2020
An increasing amount of collected data are high-dimensional multi-way arrays (tensors), and it is crucial for efficient learning algorithms to exploit this tensorial structure as much as possible. The ever-present curse of dimensionality for high dimensional data and the loss of structure when vectorizing the data motivates the use of tailored low-rank tensor classification methods. In the presence of small amounts of training data, kernel methods offer an attractive choice a...
September 11, 2023
In the context of kernel machines, polynomial and Fourier features are commonly used to provide a nonlinear extension to linear models by mapping the data to a higher-dimensional space. Unless one considers the dual formulation of the learning problem, which renders exact large-scale learning unfeasible, the exponential increase of model parameters in the dimensionality of the data caused by their tensor-product structure prohibits to tackle high-dimensional problems. One of ...
December 11, 2020
We propose a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. Theoretical considerations are supported by numerical experiments, which demonstrate the effectiveness and...