September 13, 2018
We systematically analyze the fibration structure of toric hypersurface Calabi-Yau threefolds with large and small Hodge numbers. We show that there are only four such Calabi-Yau threefolds with $h^{1, 1} \geq 140$ or $h^{2, 1} \geq 140$ that do not have manifest elliptic or genus one fibers arising from a fibration of the associated 4D polytope. There is a genus one fibration whenever either Hodge number is 150 or greater, and an elliptic fibration when either Hodge number i...
November 28, 2023
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...
February 12, 2000
We present an inductive algebraic approach to the systematic construction and classification of generalized Calabi-Yau (CY) manifolds in different numbers of complex dimensions, based on Batyrev's formulation of CY manifolds as toric varieties in weighted complex projective spaces associated with reflexive polyhedra. We show how the allowed weight vectors in lower dimensions may be extended to higher dimensions, emphasizing the roles of projection and intersection in their du...
December 13, 1994
Recently two groups have listed all sets of weights (k_1,...,k_5) such that the weighted projective space P_4^{(k_1,...,k_5)} admits a transverse Calabi-Yau hypersurface. It was noticed that the corresponding Calabi-Yau manifolds do not form a mirror symmetric set since some 850 of the 7555 manifolds have Hodge numbers (b_{11},b_{21}) whose mirrors do not occur in the list. By means of Batyrev's construction we have checked that each of the 7555 manifolds does indeed have a m...
July 19, 2012
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic-K3 fibrations whose mirror images are also elliptic-K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fa...
June 3, 2013
An algorithm to systematically construct all Calabi-Yau elliptic fibrations realized as hypersurfaces in a toric ambient space for a given base and gauge group is described. This general method is applied to the particular question of constructing SU(5) GUTs with multiple U(1) gauge factors. The basic data consists of a top over each toric divisor in the base together with compactification data giving the embedding into a reflexive polytope. The allowed choices of compactific...
October 5, 1993
We consider families ${\cal F}(\Delta)$ consisting of complex $(n-1)$-dimensional projective algebraic compactifications of $\Delta$-regular affine hypersurfaces $Z_f$ defined by Laurent polynomials $f$ with a fixed $n$-dimensional Newton polyhedron $\Delta$ in $n$-dimensional algebraic torus ${\bf T} =({\bf C}^*)^n$. If the family ${\cal F}(\Delta)$ defined by a Newton polyhedron $\Delta$ consists of $(n-1)$-dimensional Calabi-Yau varieties, then the dual, or polar, polyhedr...
June 22, 2011
We describe the C program mori.x. It is part of PALP, a package for analyzing lattice polytopes. Its main purpose is the construction and analysis of three--dimensional smooth Calabi--Yau hypersurfaces in toric varieties. The ambient toric varieties are given in terms of fans over the facets of reflexive lattice polytopes. The program performs crepant star triangulations of reflexive polytopes and determines the Mori cones of the resulting toric varieties. Furthermore, it com...
October 24, 2023
We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...
October 9, 2023
The diffeomorphism class of simply-connected smooth Calabi-Yau threefolds with torsion-free cohomology is determined via certain basic topological invariants: the Hodge numbers, the triple intersection form, and the second Chern class. In the present paper, we shed some light on this classification by placing bounds on the number of diffeomorphism classes present in the set of smooth Calabi-Yau threefolds constructed from the Kreuzer-Skarke list of reflexive polytopes up to P...