January 21, 2004
According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits (random binary variables). This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular model, we construct and numerically examine the performance o...
February 27, 2019
Neural networks enjoy widespread success in both research and industry and, with the imminent advent of quantum technology, it is now a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose the use of quantum neurons as a building block for quantum feed-forward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function and provide both clas...
June 9, 2021
The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerica...
November 30, 2017
Even the most sophisticated artificial neural networks are built by aggregating substantially identical units called neurons. A neuron receives multiple signals, internally combines them, and applies a non-linear function to the resulting weighted sum. Several attempts to generalize neurons to the quantum regime have been proposed, but all proposals collided with the difficulty of implementing non-linear activation functions, which is essential for classical neurons, due to t...
December 4, 2016
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e.\ unitary. (The classical networks we generalise are called feedforward, and have step-function activation functions.) The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstr...
July 8, 2021
Artificial neural networks have achieved great success in many fields ranging from image recognition to video understanding. However, its high requirements for computing and memory resources have limited further development on processing big data with high dimensions. In recent years, advances in quantum computing show that building neural networks on quantum processors is a potential solution to this problem. In this paper, we propose a novel neural network model named Quant...
June 26, 2020
Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near future intermediate size quantum computers. Some approaches are based on parametrized quantum circuits, and use neural network-inspired algorithms to train them. Other approaches, closer to classical neuromorphic computing, take ad...
July 6, 2021
In recent years, Quantum Computing witnessed massive improvements in terms of available resources and algorithms development. The ability to harness quantum phenomena to solve computational problems is a long-standing dream that has drawn the scientific community's interest since the late 80s. In such a context, we propose our contribution. First, we introduce basic concepts related to quantum computations, and then we explain the core functionalities of technologies that imp...
September 4, 2021
The rapid development of quantum computer hardware has laid the hardware foundation for the realization of QNN. Due to quantum properties, QNN shows higher storage capacity and computational efficiency compared to its classical counterparts. This article will review the development of QNN in the past six years from three parts: implementation methods, quantum circuit models, and difficulties faced. Among them, the first part, the implementation method, mainly refers to some u...
March 3, 2021
In the last few years, quantum computing and machine learning fostered rapid developments in their respective areas of application, introducing new perspectives on how information processing systems can be realized and programmed. The rapidly growing field of Quantum Machine Learning aims at bringing together these two ongoing revolutions. Here we first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quan...