September 23, 2020
In this paper, we present a gradient-free approach for training multi-layered neural networks based upon quantum perceptrons. Here, we depart from the classical perceptron and the elemental operations on quantum bits, i.e. qubits, so as to formulate the problem in terms of quantum perceptrons. We then make use of measurable operators to define the states of the network in a manner consistent with a Markov process. This yields a Dirac-Von Neumann formulation consistent with qu...
February 22, 2024
This paper provides an introduction to quantum machine learning, exploring the potential benefits of using quantum computing principles and algorithms that may improve upon classical machine learning approaches. Quantum computing utilizes particles governed by quantum mechanics for computational purposes, leveraging properties like superposition and entanglement for information representation and manipulation. Quantum machine learning applies these principles to enhance class...
August 2, 2021
With the rapid advance of quantum machine learning, several proposals for the quantum-analogue of convolutional neural network (CNN) have emerged. In this work, we benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification. In particular, we propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm. We investigate the performance of various QCNN models differe...
June 24, 2021
Universality of neural networks describes the ability to approximate arbitrary function, and is a key ingredient to keep the method effective. The established models for universal quantum neural networks(QNN), however, require the preparation of multiple copies of the same quantum state to generate the nonlinearity, with the copy number increasing significantly for highly oscillating functions, resulting in a huge demand for a large-scale quantum processor. To address this pr...
October 1, 2021
This paper highlights the possibility of creating quantum neural networks that are trained by Grover's Search Algorithm. The purpose of this work is to propose the concept of combining the training process of a neural network, which is performed on the principles of Grover's algorithm, with the functional structure of that neural network, interpreted as a quantum circuit. As a simple example of a neural network, to showcase the concept, a perceptron with one trainable paramet...
June 13, 2024
The rapid evolution of artificial intelligence has led to the widespread adoption of Long Short-Term Memory (LSTM) networks, known for their effectiveness in processing sequential data. However, LSTMs are constrained by inherent limitations such as the vanishing gradient problem and substantial computational demands. The advent of quantum computing presents a revolutionary approach to overcoming these obstacles. This paper introduces the Quantum LSTM (qLSTM) model, which inte...
December 18, 2020
Along with the development of AI democratization, the machine learning approach, in particular neural networks, has been applied to wide-range applications. In different application scenarios, the neural network will be accelerated on the tailored computing platform. The acceleration of neural networks on classical computing platforms, such as CPU, GPU, FPGA, ASIC, has been widely studied; however, when the scale of the application consistently grows up, the memory bottleneck...
January 12, 2016
Training artificial neural networks requires a tedious empirical evaluation to determine a suitable neural network architecture. To avoid this empirical process several techniques have been proposed to automatise the architecture selection process. In this paper, we propose a method to perform parameter and architecture selection for a quantum weightless neural network (qWNN). The architecture selection is performed through the learning procedure of a qWNN with a learning alg...
November 21, 2022
The universality of a quantum neural network refers to its ability to approximate arbitrary functions and is a theoretical guarantee for its effectiveness. A non-universal neural network could fail in completing the machine learning task. One proposal for universality is to encode the quantum data into identical copies of a tensor product, but this will substantially increase the system size and the circuit complexity. To address this problem, we propose a simple design of a ...
March 22, 2022
There has been significant recent interest in quantum neural networks (QNNs), along with their applications in diverse domains. Current solutions for QNNs pose significant challenges concerning their scalability, ensuring that the postulates of quantum mechanics are satisfied and that the networks are physically realizable. The exponential state space of QNNs poses challenges for the scalability of training procedures. The no-cloning principle prohibits making multiple copies...