December 15, 2013
Recently, with the rapid development of technology, there are a lot of applications require to achieve low-cost learning. However the computational power of classical artificial neural networks, they are not capable to provide low-cost learning. In contrast, quantum neural networks may be representing a good computational alternate to classical neural network approaches, based on the computational power of quantum bit (qubit) over the classical bit. In this paper we present a...
June 18, 2019
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried...
May 9, 2020
The last few decades have seen significant breakthroughs in the fields of deep learning and quantum computing. Research at the junction of the two fields has garnered an increasing amount of interest, which has led to the development of quantum deep learning and quantum-inspired deep learning techniques in recent times. In this work, we present an overview of advances in the intersection of quantum computing and deep learning by discussing the technical contributions, strengt...
April 25, 2018
This text aims to present and explain quantum machine learning algorithms to a data scientist in an accessible and consistent way. The algorithms and equations presented are not written in rigorous mathematical fashion, instead, the pressure is put on examples and step by step explanation of difficult topics. This contribution gives an overview of selected quantum machine learning algorithms, however there is also a method of scores extraction for quantum PCA algorithm propos...
June 20, 2021
For the last few decades, classical machine learning has allowed us to improve the lives of many through automation, natural language processing, predictive analytics and much more. However, a major concern is the fact that we're fast approach the threshold of the maximum possible computational capacity available to us by the means of classical computing devices including CPUs, GPUs and Application Specific Integrated Circuits (ASICs). This is due to the exponential increase ...
February 12, 2023
Gradient descent methods have long been the de facto standard for training deep neural networks. Millions of training samples are fed into models with billions of parameters, which are slowly updated over hundreds of epochs. Recently, it's been shown that large, randomly initialized neural networks contain subnetworks that perform as well as fully trained models. This insight offers a promising avenue for training future neural networks by simply pruning weights from large, r...
March 25, 2009
We introduce a robust, error-tolerant adaptive training algorithm for generalized learning paradigms in high-dimensional superposed quantum networks, or \emph{adaptive quantum networks}. The formalized procedure applies standard backpropagation training across a coherent ensemble of discrete topological configurations of individual neural networks, each of which is formally merged into appropriate linear superposition within a predefined, decoherence-free subspace. Quantum pa...
February 26, 2024
In recent years, advanced deep neural networks have required a large number of parameters for training. Therefore, finding a method to reduce the number of parameters has become crucial for achieving efficient training. This work proposes a training scheme for classical neural networks (NNs) that utilizes the exponentially large Hilbert space of a quantum system. By mapping a classical NN with $M$ parameters to a quantum neural network (QNN) with $O(\text{polylog} (M))$ rotat...
March 11, 2023
This article gives an overview and a perspective of recent theoretical proposals and their experimental implementations in the field of quantum machine learning. Without an aim to being exhaustive, the article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors, and their experimental realizations in the platforms of quantum photonics and superconducting circuits. The field of quantum machine learning could ...
January 19, 2023
Binary neural networks, i.e., neural networks whose parameters and activations are constrained to only two possible values, offer a compelling avenue for the deployment of deep learning models on energy- and memory-limited devices. However, their training, architectural design, and hyperparameter tuning remain challenging as these involve multiple computationally expensive combinatorial optimization problems. Here we introduce quantum hypernetworks as a mechanism to train bin...