September 15, 2023
Similar papers 3
March 14, 2022
We consider the community detection problem in a sparse $q$-uniform hypergraph $G$, assuming that $G$ is generated according to the Hypergraph Stochastic Block Model (HSBM). We prove that a spectral method based on the non-backtracking operator for hypergraphs works with high probability down to the generalized Kesten-Stigum detection threshold conjectured by Angelini et al. (2015). We characterize the spectrum of the non-backtracking operator for the sparse HSBM and provide ...
May 24, 2022
The stochastic block model is a canonical random graph model for clustering and community detection on network-structured data. Decades of extensive study on the problem have established many profound results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from a mathematical and an applied standpoint. It states that no estimator based on the network topology can perform substantially better than chance on sparse graphs if the...
January 20, 2015
In this paper, we present and analyze a simple and robust spectral algorithm for the stochastic block model with $k$ blocks, for any $k$ fixed. Our algorithm works with graphs having constant edge density, under an optimal condition on the gap between the density inside a block and the density between the blocks. As a co-product, we settle an open question posed by Abbe et. al. concerning censor block models.
November 29, 2018
We propose and analyze the problems of \textit{community goodness-of-fit and two-sample testing} for stochastic block models (SBM), where changes arise due to modification in community memberships of nodes. Motivated by practical applications, we consider the challenging sparse regime, where expected node degrees are constant, and the inter-community mean degree ($b$) scales proportionally to intra-community mean degree ($a$). Prior work has sharply characterized partial or f...
July 3, 2015
The stochastic block model is a natural model for studying community detection in random networks. Its clustering properties have been extensively studied in the statistics, physics and computer science literature. Recently this area has experienced major mathematical breakthroughs, particularly for the binary (two-community) version, see Mossel, Neeman, Sly (2012, 2013) and Massoulie (2013). In this paper, we introduce a variant of the binary model which we call the regular ...
March 2, 2015
New phase transition phenomena have recently been discovered for the stochastic block model, for the special case of two non-overlapping symmetric communities. This gives raise in particular to new algorithmic challenges driven by the thresholds. This paper investigates whether a general phenomenon takes place for multiple communities, without imposing symmetry. In the general stochastic block model $\text{SBM}(n,p,Q)$, $n$ vertices are split into $k$ communities of relativ...
November 5, 2019
Community detection tasks have received a lot of attention across statistics, machine learning, and information theory with a large body of work concentrating on theoretical guarantees for the stochastic block model. One line of recent work has focused on modeling the spectral embedding of a network using Gaussian mixture models (GMMs) in scaling regimes where the ability to detect community memberships improves with the size of the network. However, these regimes are not ver...
March 6, 2019
We consider the spectral properties of sparse stochastic block models, where $N$ vertices are partitioned into $K$ balanced communities. Under an assumption that the intra-community probability and inter-community probability are of similar order, we prove a local semicircle law up to the spectral edges, with an explicit formula on the deterministic shift of the spectral edge. We also prove that the fluctuation of the extremal eigenvalues is given by the GOE Tracy--Widom law ...
July 13, 2021
Community detection is the problem of identifying community structure in graphs. Often the graph is modeled as a sample from the Stochastic Block Model, in which each vertex belongs to a community. The probability that two vertices are connected by an edge depends on the communities of those vertices. In this paper, we consider a model of {\em censored} community detection with two communities, where most of the data is missing as the status of only a small fraction of the po...
June 16, 2019
Spectral clustering is one of the most popular algorithms for community detection in network analysis. Based on this rationale, in this paper we give the convergence rate of eigenvectors for the adjacency matrix in the $l_\infty$ norm, under the stochastic block model (BM) and degree corrected stochastic block model (DCBM), adding some mild and rational conditions. We also extend this result to a more general model, presented based on the DCBM such that the value of random va...