September 15, 2023
Similar papers 4
September 8, 2014
We prove the existence of an asymptotic phase transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. National Academy of Sciences. 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the inter-community edge connection probability $p$ grows. This phase transition separates a sub-critical regime of small $p$, where modularity-based comm...
July 10, 2010
Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the structure of several empirical networks. Spectral clustering is a popular and computationally feasible method to discover these communities. The stochastic blockmodel [Social Networks ...
August 26, 2018
Real-world networks usually have community structure, that is, nodes are grouped into densely connected communities. Community detection is one of the most popular and best-studied research topics in network science and has attracted attention in many different fields, including computer science, statistics, social sciences, among others. Numerous approaches for community detection have been proposed in literature, from ad-hoc algorithms to systematic model-based approaches. ...
October 23, 2021
Motivated by the stochastic block model, we investigate a class of Wigner-type matrices with certain block structures, and establish a CLT for the corresponding linear spectral statistics via the large-deviation bounds from local law and the cumulant expansion formula. We apply the results to the stochastic block model. Specifically, a class of renormalized adjacency matrices will be block-Wigner-type matrices. Further, we show that for certain estimator of such renormalized ...
December 16, 2014
The stochastic block model is a popular tool for studying community structures in network data. We develop a goodness-of-fit test for the stochastic block model. The test statistic is based on the largest singular value of a residual matrix obtained by subtracting the estimated block mean effect from the adjacency matrix. Asymptotic null distribution is obtained using recent advances in random matrix theory. The test is proved to have full power against alternative models wit...
August 8, 2024
The network data has attracted considerable attention in modern statistics. In research on complex network data, one key issue is finding its underlying connection structure given a network sample. The methods that have been proposed in literature usually assume that the underlying structure is a known model. In practice, however, the true model is usually unknown, and network learning procedures based on these methods may suffer from model misspecification. To handle this is...
January 15, 2019
Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network's low-dimensional structure, and the nodes that participate in it, using any null model. We use generative models to estimate the expected eigenvalue distribution under a specified null model, and then detect where the data network's eigenspectra exceed the estimated bounds. ...
May 22, 2017
We study sharp detection thresholds for degree corrections in Stochastic Block Models in the context of a goodness of fit problem, and explore the effect of the unknown community assignment (a high dimensional nuisance parameter) and the graph density on testing for degree corrections. When degree corrections are relatively dense, a simple test based on the total number of edges is asymptotically optimal. For sparse degree corrections, the results undergo several changes in b...
July 19, 2015
Recently network analysis has gained more and more attentions in statistics, as well as in computer science, probability, and applied mathematics. Community detection for the stochastic block model (SBM) is probably the most studied topic in network analysis. Many methodologies have been proposed. Some beautiful and significant phase transition results are obtained in various settings. In this paper, we provide a general minimax theory for community detection. It gives minima...
April 12, 2019
We consider the community detection problem in sparse random hypergraphs. Angelini et al. (2015) conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic block model. We solve the positive part of the conjecture for the case of two blocks: above the threshold, there is a spectral algorithm which asymptotically almost surely constructs a partition of the hypergraph correlated with the ...