November 28, 2023
Similar papers 4
January 29, 1997
We present a general scheme for identifying fibrations in the framework of toric geometry and provide a large list of weights for Calabi--Yau 4-folds. We find 914,164 weights with degree $d\le150$ whose maximal Newton polyhedra are reflexive and 525,572 weights with degree $d\le4000$ that give rise to weighted projective spaces such that the polynomial defining a hypersurface of trivial canonical class is transversal. We compute all Hodge numbers, using Batyrev's formulas (de...
April 18, 2019
We use the latest techniques in machine-learning to study whether from the landscape of Calabi-Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete playground, we find that a relatively simple neural network with forward-feeding multi-layers can very efficiently distinguish the elliptic fibrations, much more so than using the...
October 30, 2023
We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds. The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated with an infinite class of 4d N=1 supersymmetric gauge theories, which are realized as worldvolume theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS/CFT correspondence, the minimum volume of the Sasaki-Einstein base is inversely proportional to the ...
May 8, 2014
We investigate the mathematical properties of the class of Calabi-Yau four-folds recently found in [arXiv:1303.1832]. This class consists of 921,497 configuration matrices which correspond to manifolds that are described as complete intersections in products of projective spaces. For each manifold in the list, we compute the full Hodge diamond as well as additional topological invariants such as Chern classes and intersection numbers. Using this data, we conclude that there a...
November 5, 2014
Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, i...
December 13, 1994
Recently two groups have listed all sets of weights (k_1,...,k_5) such that the weighted projective space P_4^{(k_1,...,k_5)} admits a transverse Calabi-Yau hypersurface. It was noticed that the corresponding Calabi-Yau manifolds do not form a mirror symmetric set since some 850 of the 7555 manifolds have Hodge numbers (b_{11},b_{21}) whose mirrors do not occur in the list. By means of Batyrev's construction we have checked that each of the 7555 manifolds does indeed have a m...
July 9, 2024
We present new invariant machine learning models that approximate the Ricci-flat metric on Calabi-Yau (CY) manifolds with discrete symmetries. We accomplish this by combining the $\phi$-model of the cymetric package with non-trainable, $G$-invariant, canonicalization layers that project the $\phi$-model's input data (i.e. points sampled from the CY geometry) to the fundamental domain of a given symmetry group $G$. These $G$-invariant layers are easy to concatenate, provided o...
November 2, 2021
We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of...
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
August 1, 2013
With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and non-compact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its princip...