ID: 2311.17146

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation

November 28, 2023

View on ArXiv

Similar papers 2

Estimating Calabi-Yau Hypersurface and Triangulation Counts with Equation Learners

November 15, 2018

87% Match
Ross Altman, Jonathan Carifio, ... , Nelson Brent D.
High Energy Physics - Theory

We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ t...

Find SimilarView on arXiv

Machine Learning CICY Threefolds

June 8, 2018

87% Match
Kieran Bull, Yang-Hui He, ... , Mishra Challenger
Algebraic Geometry
Machine Learning

The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...

Find SimilarView on arXiv

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

December 8, 2020

87% Match
Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, ... , Ruehle Fabian
High Energy Physics - Theory

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string...

Find SimilarView on arXiv

Bounding the Kreuzer-Skarke Landscape

August 4, 2020

86% Match
Mehmet Demirtas, Liam McAllister, Andres Rios-Tascon
High Energy Physics - Theory

We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...

Find SimilarView on arXiv

Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds

September 21, 2022

86% Match
Wei Cui, Xin Gao, Juntao Wang
Machine Learning

Generalized Complete Intersection Calabi-Yau Manifold (gCICY) is a new construction of Calabi-Yau manifolds established recently. However, the generation of new gCICYs using standard algebraic method is very laborious. Due to this complexity, the number of gCICYs and their classification still remain unknown. In this paper, we try to make some progress in this direction using neural network. The results showed that our trained models can have a high precision on the existing ...

Find SimilarView on arXiv

Inception Neural Network for Complete Intersection Calabi-Yau 3-folds

July 27, 2020

86% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We introduce a neural network inspired by Google's Inception model to compute the Hodge number $h^{1,1}$ of complete intersection Calabi-Yau (CICY) 3-folds. This architecture improves largely the accuracy of the predictions over existing results, giving already 97% of accuracy with just 30% of the data for training. Moreover, accuracy climbs to 99% when using 80% of the data for training. This proves that neural networks are a valuable resource to study geometric aspects in b...

Find SimilarView on arXiv

Machine learning Calabi-Yau metrics

October 18, 2019

86% Match
Anthony Ashmore, Yang-Hui He, Burt Ovrut
Algebraic Geometry
Machine Learning

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...

Find SimilarView on arXiv

Machine Learned Calabi-Yau Metrics and Curvature

November 17, 2022

86% Match
Per Berglund, Giorgi Butbaia, Tristan Hübsch, Vishnu Jejjala, Damián Mayorga Peña, ... , Tan Justin
Machine Learning
Algebraic Geometry
Differential Geometry

Finding Ricci-flat (Calabi-Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi-Yau metric within a given K\"ahler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi-Yau threefolds. Using these Ricci-flat metric approximations for the Cefal\'u family of quartic twofol...

Find SimilarView on arXiv

Numerical Calabi-Yau metrics from holomorphic networks

December 9, 2020

86% Match
Michael R. Douglas, Subramanian Lakshminarasimhan, Yidi Qi
Complex Variables
Computational Physics

We propose machine learning inspired methods for computing numerical Calabi-Yau (Ricci flat K\"ahler) metrics, and implement them using Tensorflow/Keras. We compare them with previous work, and find that they are far more accurate for manifolds with little or no symmetry. We also discuss issues such as overparameterization and choice of optimization methods.

Find SimilarView on arXiv

Calabi-Yau Spaces in the String Landscape

June 30, 2020

85% Match
Yang-Hui He
Algebraic Geometry

Calabi-Yau spaces, or Kahler spaces admitting zero Ricci curvature, have played a pivotal role in theoretical physics and pure mathematics for the last half-century. In physics, they constituted the first and natural solution to compactification of superstring theory to our 4-dimensional universe, primarily due to one of their equivalent definitions being the admittance of covariantly constant spinors. Since the mid-1980s, physicists and mathematicians have joined forces in c...

Find SimilarView on arXiv