September 7, 2022
We present a neural network architecture, Bispectral Neural Networks (BNNs) for learning representations that are invariant to the actions of compact commutative groups on the space over which a signal is defined. The model incorporates the ansatz of the bispectrum, an analytically defined group invariant that is complete -- that is, it preserves all signal structure while removing only the variation due to group actions. Here, we demonstrate that BNNs are able to simultaneou...
February 20, 2021
Disentangled representation learning is one of the major goals of deep learning, and is a key step for achieving explainable and generalizable models. A well-defined theoretical guarantee still lacks for the VAE-based unsupervised methods, which are a set of popular methods to achieve unsupervised disentanglement. The Group Theory based definition of representation disentanglement mathematically connects the data transformations to the representations using the formalism of g...
May 2, 2019
We employ techniques of machine-learning, exemplified by support vector machines and neural classifiers, to initiate the study of whether AI can "learn" algebraic structures. Using finite groups and finite rings as a concrete playground, we find that questions such as identification of simple groups by "looking" at the Cayley table or correctly matching addition and multiplication tables for finite rings can, at least for structures of small size, be performed by the AI, even...
January 12, 2005
We resolve the question of whether Fourier sampling can efficiently solve the hidden subgroup problem. Specifically, we show that the hidden subgroup problem over the symmetric group cannot be efficiently solved by strong Fourier sampling, even if one may perform an arbitrary POVM on the coset state. Our results apply to the special case relevant to the Graph Isomorphism problem.
June 15, 2024
This paper pertains to an emerging machine learning paradigm: learning higher-order functions, i.e. functions whose inputs are functions themselves, $\textit{particularly when these inputs are Neural Networks (NNs)}$. With the growing interest in architectures that process NNs, a recurring design principle has permeated the field: adhering to the permutation symmetries arising from the connectionist structure of NNs. $\textit{However, are these the sole symmetries present in ...
June 28, 2023
In the recent years, deep learning techniques have shown great success in various tasks related to inverse problems, where a target quantity of interest can only be observed through indirect measurements by a forward operator. Common approaches apply deep neural networks in a post-processing step to the reconstructions obtained by classical reconstruction methods. However, the latter methods can be computationally expensive and introduce artifacts that are not present in the ...
June 8, 2023
Crystallographic groups describe the symmetries of crystals and other repetitive structures encountered in nature and the sciences. These groups include the wallpaper and space groups. We derive linear and nonlinear representations of functions that are (1) smooth and (2) invariant under such a group. The linear representation generalizes the Fourier basis to crystallographically invariant basis functions. We show that such a basis exists for each crystallographic group, that...
February 27, 2017
We propose to study equivariance in deep neural networks through parameter symmetries. In particular, given a group $\mathcal{G}$ that acts discretely on the input and output of a standard neural network layer $\phi_{W}: \Re^{M} \to \Re^{N}$, we show that $\phi_{W}$ is equivariant with respect to $\mathcal{G}$-action iff $\mathcal{G}$ explains the symmetries of the network parameters $W$. Inspired by this observation, we then propose two parameter-sharing schemes to induce th...
March 30, 2020
Identifying symmetries in data sets is generally difficult, but knowledge about them is crucial for efficient data handling. Here we present a method how neural networks can be used to identify symmetries. We make extensive use of the structure in the embedding layer of the neural network which allows us to identify whether a symmetry is present and to identify orbits of the symmetry in the input. To determine which continuous or discrete symmetry group is present we analyse ...
March 4, 2024
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though methods incorporating symmetries often require prior knowledge. While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting. In this paper, we construct a generative model that explicitly aims to capture symmetries in the data, resulting in a model ...