September 16, 2019
It has been suggested that amplitudes for quantum higher-spin massive particles exchanging gravitons lead, via a classical limit, to results for scattering of spinning black holes in general relativity, when the massive particles are in a certain way minimally coupled to gravity. Such limits of such amplitudes suggest, at least at lower orders in spin, up to second order in the gravitational constant $G$, that the classical aligned-spin scattering function for an arbitrary-ma...
December 13, 2023
Scattering of two Kerr Black Holes emitting gravitational waves can be captured by an effective theory of a massive higher-spin field interacting with the gravitational field. While other compact objects should activate a multitude of non-minimal interactions it is the black holes that should be captured by the simplest minimal interaction. Implementing massive higher-spin symmetry via a string-inspired BRST approach we construct an action that reproduces the correct cubic am...
January 24, 2020
We introduce on-shell variables for Heavy Particle Effective Theories (HPETs) with the goal of extending Heavy Black Hole Effective Theory to higher spins and of facilitating its application to higher post-Minkowskian orders. These variables inherit the separation of spinless and spin-inclusive effects from the HPET fields, resulting in an explicit spin-multipole expansion of the three-point amplitude for any spin. By matching amplitudes expressed using the on-shell HPET vari...
February 1, 2023
We introduce a novel bootstrap method for classical Compton scattering amplitudes involving two massless gluon/graviton particles and two arbitrary-spin infinite-mass particles in a heavy-mass effective field theory context. Using a suitable ansatz, we deduce new and explicit classical spin results for gluon four and five-point infinite mass processes that exhibit exponentiated three-point factorizations to all orders in spin and feature no spurious poles. We discuss the gene...
August 1, 2022
We consider a broad family of higher-derivative extensions of four-dimensional Einstein gravity and study the multipole moments of rotating black holes therein. We carefully show that the various definitions of multipoles carry over from general relativity, and compute these multipoles for higher-derivative Kerr using the ACMC expansion formalism. We obtain the mass $M_{n}$ and current $S_{n}$ multipoles as a series expansions in the dimensionless spin; in some cases we are a...
August 12, 1994
We analyse the high-energy behavior of tree-level graviton Compton amplitudes for particles of mass m and arbitrary spin, concentrating on a combination of forward amplitudes that will be unaffected by eventual cross- couplings to other, higher spins. We first show that for any spin larger than 2, tree-level unitarity is already violated at energies well below the Planck scale M, if m << M. We then restore unitarity to this amplitude up to M by adding non-minimal couplings th...
September 21, 2016
In this paper, we provide a simple and modern discussion of rotational superradiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particl...
May 5, 2014
A co-rotating bosonic field interacting with a spinning Kerr black hole can extract rotational energy and angular momentum from the hole. This intriguing phenomenon is known as superradiant scattering. As pointed out by Press and Teukolsky, the black-hole-field system can be made unstable (explosive) by placing a reflecting mirror around the black hole which prevents the extracted energy from escaping to infinity. This composed black-hole-mirror-field bomb has been studied ex...
October 17, 2019
We study the scattering of monochromatic bosonic plane waves impinging upon a rotating black hole, in the special case that the direction of incidence is aligned with the spin axis. We present accurate numerical results for electromagnetic Kerr scattering cross sections for the first time, and give a unified picture of the Kerr scattering for all massless bosonic fields.
July 21, 2021
The scattering of massless waves of helicity $|h|=0,\frac{1}{2},1$ in Schwarzschild and Kerr backgrounds is revisited in the long-wavelenght regime. Using a novel description of such backgrounds in terms of gravitating massive particles, we compute classical wave scattering in terms of $2\to 2$ QFT amplitudes in flat space, to all orders in spin. The results are Newman-Penrose amplitudes which are in direct correspondence with solutions of the Regge-Wheeler/Teukolsky equation...