October 8, 2005
Quantum amplitudes for $s=2$ gravitational-wave perturbations of Einstein/scalar collapse to a black hole are treated by analogy with $s=1$ Maxwell perturbations. The spin-2 perturbations split into parts with odd and even parity. We use the Regge-Wheeler gauge; at a certain point we make a gauge transformation to an asymptotically-flat gauge, such that the metric perturbations have the expected falloff behaviour at large radii. By analogy with $s=1$, for $s=2$ natural 'coord...
September 4, 2012
We discuss a general method to study linear perturbations of slowly rotating black holes which is valid for any perturbation field, and particularly advantageous when the field equations are not separable. As an illustration of the method we investigate massive vector (Proca) perturbations in the Kerr metric, which do not appear to be separable in the standard Teukolsky formalism. Working in a perturbative scheme, we discuss two important effects induced by rotation: a Zeeman...
April 28, 2024
In a seminal work, Hawking showed that natural states for free quantum matter fields on classical spacetimes that solve the spherically symmetric vacuum Einstein equations are KMS states of non-vanishing temperature. Although Hawking's calculation does not include backreaction of matter on geometry, it is more than plausible that the corresponding Hawking radiation leads to black hole evaporation which is in principle observable. Obviously, an improvement of Hawking's calcu...
August 1, 2022
In this thesis we present a study of the computation of classical observables in gauge theories and gravity directly from scattering amplitudes. In particular, we discuss the direct application of modern amplitude techniques in the one, and two-body problems for both, scattering and bounded scenarios, and in both, classical electrodynamics and gravity, with particular emphasis on spin effects in general, and in four spacetime dimensions. Among these observables we have the co...
May 7, 2020
We compute scalar quasinormal mode (QNM) frequencies in rotating black hole solutions of the most general class of higher-derivative gravity theories, to quartic order in the curvature, that reduce to General Relativity for weak fields and are compatible with its symmetries. The wave operator governing the QNMs is not separable, but we show one can extract the QNM frequencies by a projection onto the set of spheroidal harmonics. We have obtained accurate results for the quasi...
September 29, 2023
We provide the analytic waveform in time domain for the scattering of two Kerr black holes at leading order in the post-Minkowskian expansion and up to fourth order in both spins. The result is obtained by the generalization of the KMOC formalism to radiative observables, combined with the analytic continuation of the five-point scattering amplitude to complex kinematics. We use analyticity arguments to express the waveform directly in terms of the three-point coupling of the...
May 21, 2021
On-shell scattering amplitudes have proven to be useful tools for tackling the two-body problem in general relativity. This thesis outlines how to compute relevant classical observables that are themselves on-shell, directly from amplitudes; examples considered are the momentum impulse, total radiated momentum, and angular impulse for spinning particles. As applications we derive results relevant for black hole physics, computing in the post-Minkowskian expansion of GR, and c...
August 7, 2023
Quasinormal modes characterize the final stage of a black hole merger. In this regime, spacetime curvature is high, these modes can be used to probe potential corrections to general relativity. In this paper, we utilize the effective field theory framework to compute the leading order correction to massless scalar and electromagnetic quasinormal modes. Proceeding perturbatively in the size of the effective field theory length scale, we describe a general method to compute the...
September 13, 2022
The massless (or ultrarelativistic) limit of a Schwarzschild black hole with fixed energy was determined long ago in the form of the Aichelburg-Sexl shockwave, but the status of the same limit for a Kerr black hole is less clear. In this paper, we explore the ultrarelativistic limit of Kerr in the class of Kerr-Schild impulsive pp-waves by exploiting a relation between the metric profile and the eikonal phase associated with scattering between a scalar and the source of the m...
July 10, 1996
I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.