ID: 2401.11550

Calabi-Yau Links and Machine Learning

January 21, 2024

View on ArXiv

Similar papers 2

Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds

September 21, 2022

85% Match
Wei Cui, Xin Gao, Juntao Wang
Machine Learning

Generalized Complete Intersection Calabi-Yau Manifold (gCICY) is a new construction of Calabi-Yau manifolds established recently. However, the generation of new gCICYs using standard algebraic method is very laborious. Due to this complexity, the number of gCICYs and their classification still remain unknown. In this paper, we try to make some progress in this direction using neural network. The results showed that our trained models can have a high precision on the existing ...

Find SimilarView on arXiv

Machine Learning of Calabi-Yau Volumes

June 11, 2017

85% Match
Daniel Krefl, Rak-Kyeong Seong
Algebraic Geometry

We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can be approximated via a second order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau 3-folds as the input. We a...

Find SimilarView on arXiv

Machine Learning Calabi-Yau Four-folds

September 5, 2020

85% Match
Yang-Hui He, Andre Lukas
Algebraic Geometry
Machine Learning

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...

Find SimilarView on arXiv

Machine learning for complete intersection Calabi-Yau manifolds: a methodological study

July 30, 2020

84% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...

Find SimilarView on arXiv

Applying machine learning to the Calabi-Yau orientifolds with string vacua

December 9, 2021

84% Match
Xin Gao, Hao Zou
High Energy Physics - Theory

We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...

Find SimilarView on arXiv

Deep learning complete intersection Calabi-Yau manifolds

November 20, 2023

84% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...

Find SimilarView on arXiv

Machine Learning CICY Threefolds

June 8, 2018

84% Match
Kieran Bull, Yang-Hui He, ... , Mishra Challenger
Algebraic Geometry
Machine Learning

The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to w...

Find SimilarView on arXiv

Calabi-Yau Metrics, Energy Functionals and Machine-Learning

December 20, 2021

84% Match
Anthony Ashmore, Lucille Calmon, ... , Ovrut Burt A.
Machine Learning
Algebraic Geometry

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. We extend previous work on learning approximate Ricci-flat metrics calculated using Donaldson's algorithm to the much more accurate "optimal" metrics of Headrick and Nassar. We show that machine learning is able to predict the K\"ahler potential of a Calabi-Yau metric having seen only a small sample of training data.

Find SimilarView on arXiv

Deep multi-task mining Calabi-Yau four-folds

August 4, 2021

84% Match
Harold Erbin, Riccardo Finotello, ... , Tamaazousti Mohamed
Machine Learning
Algebraic Geometry

We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...

Find SimilarView on arXiv

Lectures on Numerical and Machine Learning Methods for Approximating Ricci-flat Calabi-Yau Metrics

December 28, 2023

84% Match
Lara B. Anderson, James Gray, Magdalena Larfors
High Energy Physics - Theory

Calabi-Yau (CY) manifolds play a ubiquitous role in string theory. As a supersymmetry-preserving choice for the 6 extra compact dimensions of superstring compactifications, these spaces provide an arena in which to explore the rich interplay between physics and geometry. These lectures will focus on compact CY manifolds and the long standing problem of determining their Ricci flat metrics. Despite powerful existence theorems, no analytic expressions for these metrics are know...

Find SimilarView on arXiv