ID: 2401.11550

Calabi-Yau Links and Machine Learning

January 21, 2024

View on ArXiv
Edward Hirst
High Energy Physics - Theory

Calabi-Yau links are specific $S^1$-fibrations over Calabi-Yau manifolds, when the link is 7-dimensional they exhibit both Sasakian and G2 structures. In this invited contribution to the DANGER proceedings, previous work exhaustively computing Calabi-Yau links and selected topological properties is summarised. Machine learning of these properties inspires new conjectures about their computation, as well as the respective Gr\"obner bases.

Similar papers 1

Daattavya Aggarwal, Yang-Hui He, Elli Heyes, Edward Hirst, ... , Silva Tomás S. R.
Differential Geometry
Algebraic Geometry

We propose a machine-learning approach to study topological quantities related to the Sasakian and $G_2$-geometries of contact Calabi-Yau $7$-manifolds. Specifically, we compute datasets for certain Sasakian Hodge numbers and for the Crowley-N\"ordstrom invariant of the natural $G_2$-structure of the $7$-dimensional link of a weighted projective Calabi-Yau $3$-fold hypersurface singularity, for each of the 7555 possible $\mathbb{P}^4(\textbf{w})$ projective spaces. These topo...

The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning

December 7, 2018

88% Match
Yang-Hui He
Algebraic Geometry
Mathematical Physics
Machine Learning

We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...

Find SimilarView on arXiv

Identifying equivalent Calabi--Yau topologies: A discrete challenge from math and physics for machine learning

February 15, 2022

87% Match
Vishnu Jejjala, Washington Taylor, Andrew Turner
Machine Learning

We review briefly the characteristic topological data of Calabi--Yau threefolds and focus on the question of when two threefolds are equivalent through related topological data. This provides an interesting test case for machine learning methodology in discrete mathematics problems motivated by physics.

Find SimilarView on arXiv

Lectures on the Calabi-Yau Landscape

January 5, 2020

86% Match
Jiakang Bao, Yang-Hui He, ... , Pietromonaco Stephen
Mathematical Physics

In these lecture notes, we survey the landscape of Calabi-Yau threefolds, and the use of machine learning to explore it. We begin with the compact portion of the landscape, focusing in particular on complete intersection Calabi-Yau varieties (CICYs) and elliptic fibrations. Non-compact Calabi-Yau manifolds are manifest in Type II superstring theories, they arise as representation varieties of quivers, used to describe gauge theories in the bulk familiar four dimensions. Final...

Find SimilarView on arXiv

Gauge theory and G2-geometry on Calabi-Yau links

June 29, 2016

86% Match
Omegar Calvo-Andrade, Lázaro O. Rodríguez Díaz, Henrique N. Sá Earp
Differential Geometry
Mathematical Physics

The $7$-dimensional link $K$ of a weighted homogeneous hypersurface on the round $9$-sphere in $\mathbb{C}^5$ has a nontrivial null Sasakian structure which is contact Calabi-Yau, in many cases. It admits a canonical co-closed $\rm G_2$-structure $\varphi$ induced by the Calabi-Yau $3$-orbifold basic geometry. We distinguish these pairs $(K,\varphi)$ by the Crowley-Nordstr\"om $\mathbb{Z}_{48}$-valued $\nu$ invariant, for which we prove odd parity and provide an algorithmic f...

Find SimilarView on arXiv
David S. Berman, Yang-Hui He, Edward Hirst
Algebraic Geometry
Machine Learning

We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...

Constructing and Machine Learning Calabi-Yau Five-folds

October 24, 2023

86% Match
R. Alawadhi, D. Angella, ... , Gherardini T. Schettini
Machine Learning
Algebraic Geometry

We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...

Find SimilarView on arXiv

Machine learning Calabi-Yau metrics

October 18, 2019

86% Match
Anthony Ashmore, Yang-Hui He, Burt Ovrut
Algebraic Geometry
Machine Learning

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...

Find SimilarView on arXiv

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

December 8, 2020

85% Match
Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, ... , Ruehle Fabian
High Energy Physics - Theory

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string...

Find SimilarView on arXiv

Calabi-Yau Geometries: Algorithms, Databases, and Physics

August 1, 2013

85% Match
Yang-Hui He
Algebraic Geometry

With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and non-compact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its princip...

Find SimilarView on arXiv