March 12, 2024
Similar papers 3
February 6, 2007
Transport is an important function in many network systems and understanding its behavior on biological, social, and technological networks is crucial for a wide range of applications. However, it is a property that is not well-understood in these systems and this is probably due to the lack of a general theoretical framework. Here, based on the finding that renormalization can be applied to bio-networks, we develop a scaling theory of transport in self-similar networks. We d...
March 24, 1999
We study the small-world network model, which mimics the transition between regular-lattice and random-lattice behavior in social networks of increasing size. We contend that the model displays a normal continuous phase transition with a divergent correlation length as the degree of randomness tends to zero. We propose a real-space renormalization group transformation for the model and demonstrate that the transformation is exact in the limit of large system size. We use this...
April 27, 2007
The science of complex networks is a new interdisciplinary branch of science which has arisen recently on the interface of physics, biology, social and computer sciences, and others. Its main goal is to discover general laws governing the creation and growth as well as processes taking place on networks, like e.g. the Internet, transportation or neural networks. It turned out that most real-world networks cannot be simply reduced to a compound of some individual components. F...
October 26, 2005
Structure-induced features of the wave functions for the quantum systems on complex networks are discussed in this paper. For a quantum system on a network, the state corresponding to the eigenvalue close to the center of the spectrum is used as the representative state to display the impacts of the structure on the wave functions. We consider the Erdos-Renyi, the WS small world and the growing randomly network (GRN) models. It is found that the probability distribution funct...
January 1, 2003
We propose a renormalization group treatment of stochastically growing networks. As an example, we study percolation on growing scale-free networks in the framework of a real-space renormalization group approach. As a result, we find that the critical behavior of percolation on the growing networks differs from that in uncorrelated nets.
June 23, 2023
We show that fractality in complex networks arises from the geometric self-similarity of their built-in hierarchical community-like structure, which is mathematically described by the scale-invariant equation for the masses of the boxes with which we cover the network when determining its box dimension. This approach - grounded in both scaling theory of phase transitions and renormalization group theory - leads to the consistent scaling theory of fractal complex networks, whi...
March 7, 2007
We present a statistical mechanics approach for the description of complex networks. We first define an energy and an entropy associated to a degree distribution which have a geometrical interpretation. Next we evaluate the distribution which extremize the free energy of the network. We find two important limiting cases: a scale-free degree distribution and a finite-scale degree distribution. The size of the space of allowed simple networks given these distribution is evaluat...
July 18, 2011
Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order phase transitions call for special techniques. We set up a renormalization group scheme by expanding an arbitrary scalar field living on the nodes of an arbitrary network, in terms of the eigenvectors of the normalized graph Laplac...
November 26, 2007
What is a complex network? How do we characterize complex networks? Which systems can be studied from a network approach? In this text, we motivate the use of complex networks to study and understand a broad panoply of systems, ranging from physics and biology to economy and sociology. Using basic tools from statistical physics, we will characterize the main types of networks found in nature. Moreover, the most recent trends in network research will be briefly discussed.
March 1, 2024
Recent research has tried to extend the concept of renormalization, which is naturally defined for geometric objects, to more general networks with arbitrary topology. The current attempts do not naturally apply to directed networks, for instance because they are based on the identification of (necessarily symmetric) inter-node distances arising from geometric embeddings or on the definition of Hermitian Laplacian operators requiring symmetric adjacency matrices in spectral a...