April 26, 2019
Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressivel...
August 1, 2008
Nowadays, scaling methods for general large-scale complex networks have been developed. We proposed a new scaling scheme called "two-site scaling". This scheme was applied iteratively to various networks, and we observed how the degree distribution of the network changes by two-site scaling. In particular, networks constructed by the BA algorithm behave differently from the networks observed in the nature. In addition, an iterative scaling scheme can define a new renormalizin...
December 22, 2017
We review the class of continuous latent space (statistical) models for network data, paying particular attention to the role of the geometry of the latent space. In these models, the presence/absence of network dyadic ties are assumed to be conditionally independent given the dyads? unobserved positions in a latent space. In this way, these models provide a probabilistic framework for embedding network nodes in a continuous space equipped with a geometry that facilitates the...
October 31, 2023
Heterogeneity and geometry are key explanatory components underlying the structure of real-world networks. The relationship between these components and the statistical complexity of networks is not well understood. We introduce a parsimonious normalised measure of statistical complexity for networks -- normalised hierarchical complexity. The measure is trivially 0 in regular graphs and we prove that this measure tends to 0 in Erd\"os-R\'enyi random graphs in the thermodynami...
February 6, 2007
Transport is an important function in many network systems and understanding its behavior on biological, social, and technological networks is crucial for a wide range of applications. However, it is a property that is not well-understood in these systems and this is probably due to the lack of a general theoretical framework. Here, based on the finding that renormalization can be applied to bio-networks, we develop a scaling theory of transport in self-similar networks. We d...
September 4, 2023
Real networks are complex dynamical systems, evolving over time with the addition and deletion of nodes and links. Currently, there exists no principled mathematical theory for their dynamics -- a grand-challenge open problem in complex networks. Here, we show that the popularity and similarity trajectories of nodes in hyperbolic embeddings of different real networks manifest universal self-similar properties with typical Hurst exponents $H \ll 0.5$. This means that the traje...
June 26, 2010
We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degre...
March 3, 2005
Complex networks have been studied extensively due to their relevance to many real systems as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social networks \cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real networks are called ``scale-free'' because they show a power-law distribution of the number of links per node \cite{ab-review,barabasi1999,faloutsos}. However, it is widely believed that complex networks are not ...
December 16, 2018
We introduce a model for the randomization of complex networks with geometric structure. The geometric randomization (GR) model assumes a homogeneous distribution of the nodes in an underlying similarity space and uses rewirings of the links to find configurations that maximize a connection probability akin to that of the $\mathbb{S}^1$ or $\mathbb{H}^2$ geometric network models. However, GR preserves the original degree sequence, as in the configuration model, thus eliminati...
September 4, 2004
We perform the renormalization-group-like numerical analysis of geographically embedded complex networks on the two-dimensional square lattice. At each step of coarsegraining procedure, the four vertices on each $2 \times 2$ square box are merged to a single vertex, resulting in the coarsegrained system of the smaller sizes. Repetition of the process leads to the observation that the coarsegraining procedure does not alter the qualitative characteristics of the original scale...