March 26, 1997
We describe theoretical backgrounds for a computer program that recognizes all closed orientable 3-manifolds up to complexity 8. The program can treat also not necessarily closed 3-manifolds of bigger complexities, but here some unrecognizable (by the program) 3-manifolds may occur.
May 26, 2023
In this paper, we introduce a novel way to use geometric deep learning for knot data by constructing a functor that takes knots to graphs and using graph neural networks. We will attempt to predict several knot invariants with this approach. This approach demonstrates high generalization capabilities.
June 29, 2007
Starting from the (apparently) elementary problem of deciding how many different topological spaces can be obtained by gluing together in pairs the faces of an octahedron, we will describe the central role played by hyperbolic geometry within three-dimensional topology. We will also point out the striking difference with the two-dimensional case, and we will review some of the results of the combinatorial and computational approach to three-manifolds developed by different ma...
June 2, 2014
This workshop about triangulations of manifolds in computational geometry and topology was held at the 2014 CG-Week in Kyoto, Japan. It focussed on computational and combinatorial questions regarding triangulations, with the goal of bringing together researchers working on various aspects of triangulations and of fostering a closer collaboration within the computational geometry and topology community. Triangulations are highly suitable for computations due to their clear...
June 30, 2020
Graph Laplacians as well as related spectral inequalities and (co-)homology provide a foray into discrete analogues of Riemannian manifolds, providing a rich interplay between combinatorics, geometry and theoretical physics. We apply some of the latest techniques in data science such as supervised and unsupervised machine-learning and topological data analysis to the Wolfram database of some 8000 finite graphs in light of studying these correspondences. Encouragingly, we find...
March 11, 2023
We often rely on censuses of triangulations to guide our intuition in $3$-manifold topology. However, this can lead to misplaced faith in conjectures if the smallest counterexamples are too large to appear in our census. Since the number of triangulations increases super-exponentially with size, there is no way to expand a census beyond relatively small triangulations; the current census only goes up to $10$ tetrahedra. Here, we show that it is feasible to search for large an...
February 3, 2022
Consider a set of $n$ data points in the Euclidean space $\mathbb{R}^d$. This set is called dataset in machine learning and data science. Manifold hypothesis states that the dataset lies on a low-dimensional submanifold with high probability. All dimensionality reduction and manifold learning methods have the assumption of manifold hypothesis. In this paper, we show that the dataset lies on an embedded hypersurface submanifold which is locally $(d-1)$-dimensional. Hence, we s...
March 31, 2024
Non-Euclidean data is frequently encountered across different fields, yet there is limited literature that addresses the fundamental challenge of training neural networks with manifold representations as outputs. We introduce the trick named Deep Extrinsic Manifold Representation (DEMR) for visual tasks in this context. DEMR incorporates extrinsic manifold embedding into deep neural networks, which helps generate manifold representations. The DEMR approach does not directly o...
October 1, 2022
Geometric deep learning has gained much attention in recent years due to more available data acquired from non-Euclidean domains. Some examples include point clouds for 3D models and wireless sensor networks in communications. Graphs are common models to connect these discrete data points and capture the underlying geometric structure. With the large amount of these geometric data, graphs with arbitrarily large size tend to converge to a limit model -- the manifold. Deep neur...
March 23, 1998
The title says it all.