May 27, 2024
Similar papers 2
June 1, 2024
Effectively analyzing the comments to uncover latent intentions holds immense value in making strategic decisions across various domains. However, several challenges hinder the process of sentiment analysis including the lexical diversity exhibited in comments, the presence of long dependencies within the text, encountering unknown symbols and words, and dealing with imbalanced datasets. Moreover, existing sentiment analysis tasks mostly leveraged sequential models to encode ...
March 18, 2024
In this study, we explore the application of transformer-based models for emotion classification on text data. We train and evaluate several pre-trained transformer models, on the Emotion dataset using different variants of transformers. The paper also analyzes some factors that in-fluence the performance of the model, such as the fine-tuning of the transformer layer, the trainability of the layer, and the preprocessing of the text data. Our analysis reveals that commonly app...
December 19, 2022
In recent years, there has been increased interest in building predictive models that harness natural language processing and machine learning techniques to detect emotions from various text sources, including social media posts, micro-blogs or news articles. Yet, deployment of such models in real-world sentiment and emotion applications faces challenges, in particular poor out-of-domain generalizability. This is likely due to domain-specific differences (e.g., topics, commun...
April 5, 2021
This paper investigates how Natural Language Understanding (NLU) could be applied in Emotion Recognition, a specific task in affective computing. We finetuned different transformers language models (BERT, DistilBERT, RoBERTa, XLNet, and ELECTRA) using a fine-grained emotion dataset and evaluating them in terms of performance (f1-score) and time to complete.
July 2, 2020
The purpose of the study is to investigate the relative effectiveness of four different sentiment analysis techniques: (1) unsupervised lexicon-based model using Sent WordNet; (2) traditional supervised machine learning model using logistic regression; (3) supervised deep learning model using Long Short-Term Memory (LSTM); and, (4) advanced supervised deep learning models using Bidirectional Encoder Representations from Transformers (BERT). We use publicly available labeled c...
November 23, 2024
Suicide is a critical global health problem involving more than 700,000 deaths yearly, particularly among young adults. Many people express their suicidal thoughts on social media platforms such as Reddit. This paper evaluates the effectiveness of the deep learning transformer-based models BERT, RoBERTa, DistilBERT, ALBERT, and ELECTRA and various Long Short-Term Memory (LSTM) based models in detecting suicidal ideation from user posts on Reddit. Toward this objective, we cur...
January 9, 2024
Emotions are integral to human social interactions, with diverse responses elicited by various situational contexts. Particularly, the prevalence of negative emotional states has been correlated with negative outcomes for mental health, necessitating a comprehensive analysis of their occurrence and impact on individuals. In this paper, we introduce a novel dataset named DepressionEmo designed to detect 8 emotions associated with depression by 6037 examples of long Reddit user...
July 26, 2023
This study is main goal is to provide a comparative comparison of libraries using machine learning methods. Experts in natural language processing (NLP) are becoming more and more interested in sentiment analysis (SA) of text changes. The objective of employing NLP text analysis techniques is to recognize and categorize feelings related to twitter users utterances. In this examination, issues with SA and the libraries utilized are also looked at. provides a number of cooperat...
September 4, 2021
Identifying emotions from text is crucial for a variety of real world tasks. We consider the two largest now-available corpora for emotion classification: GoEmotions, with 58k messages labelled by readers, and Vent, with 33M writer-labelled messages. We design a benchmark and evaluate several feature spaces and learning algorithms, including two simple yet novel models on top of BERT that outperform previous strong baselines on GoEmotions. Through an experiment with human par...
January 15, 2024
This paper uses the BERT model, which is a transformer-based architecture, to solve task 4A, English Language, Sentiment Analysis in Twitter of SemEval2017. BERT is a very powerful large language model for classification tasks when the amount of training data is small. For this experiment, we have used the BERT{\textsubscript{\tiny BASE}} model, which has 12 hidden layers. This model provides better accuracy, precision, recall, and f1 score than the Naive Bayes baseline model...