May 27, 2024
Similar papers 3
December 19, 2022
In recent years, there has been a surge of interest in research on automatic mental health detection (MHD) from social media data leveraging advances in natural language processing and machine learning techniques. While significant progress has been achieved in this interdisciplinary research area, the vast majority of work has treated MHD as a binary classification task. The multiclass classification setup is, however, essential if we are to uncover the subtle differences am...
November 8, 2023
In this paper, we delineate the strategy employed by our team, DeepLearningBrasil, which secured us the first place in the shared task DepSign-LT-EDI@RANLP-2023, achieving a 47.0% Macro F1-Score and a notable 2.4% advantage. The task was to classify social media texts into three distinct levels of depression - "not depressed," "moderately depressed," and "severely depressed." Leveraging the power of the RoBERTa and DeBERTa models, we further pre-trained them on a collected Re...
October 18, 2024
In this study, we leverage state-of-the-art Natural Language Processing (NLP) techniques to perform sentiment analysis on Amazon product reviews. By employing transformer-based models, RoBERTa, we analyze a vast dataset to derive sentiment scores that accurately reflect the emotional tones of the reviews. We provide an in-depth explanation of the underlying principles of these models and evaluate their performance in generating sentiment scores. Further, we conduct comprehens...
November 7, 2023
This paper provides different approaches for a binary sentiment classification on a small training dataset. LLMs that provided state-of-the-art results in sentiment analysis and similar domains are being used, such as BERT, RoBERTa and XLNet.
January 10, 2022
BERT has revolutionized the NLP field by enabling transfer learning with large language models that can capture complex textual patterns, reaching the state-of-the-art for an expressive number of NLP applications. For text classification tasks, BERT has already been extensively explored. However, aspects like how to better cope with the different embeddings provided by the BERT output layer and the usage of language-specific instead of multilingual models are not well studied...
May 29, 2021
With the growth of social medias, such as Twitter, plenty of user-generated data emerge daily. The short texts published on Twitter -- the tweets -- have earned significant attention as a rich source of information to guide many decision-making processes. However, their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks, including sentiment analysis. Sentiment classification is tackled...
June 4, 2021
Sentiment analysis can provide a suitable lead for the tools used in software engineering along with the API recommendation systems and relevant libraries to be used. In this context, the existing tools like SentiCR, SentiStrength-SE, etc. exhibited low f1-scores that completely defeats the purpose of deployment of such strategies, thereby there is enough scope for performance improvement. Recent advancements show that transformer based pre-trained models (e.g., BERT, RoBERTa...
July 11, 2023
As AI systems become increasingly prevalent in various aspects of daily life, gaining a comprehensive understanding of public perception towards these AI systems has become increasingly essential for several reasons such as ethical considerations, user experience, fear, disinformation, regulation, collaboration, and co-creation. In this study, we investigate how mass social media users perceive the recent rise of AI frameworks such as ChatGPT. We collect a total of 33,912 com...
May 25, 2020
Recent advances in machine learning have led to computer systems that are human-like in behaviour. Sentiment analysis, the automatic determination of emotions in text, is allowing us to capitalize on substantial previously unattainable opportunities in commerce, public health, government policy, social sciences, and art. Further, analysis of emotions in text, from news to social media posts, is improving our understanding of not just how people convey emotions through languag...
October 18, 2023
This technical report explores the ability of ChatGPT in recognizing emotions from text, which can be the basis of various applications like interactive chatbots, data annotation, and mental health analysis. While prior research has shown ChatGPT's basic ability in sentiment analysis, its performance in more nuanced emotion recognition is not yet explored. Here, we conducted experiments to evaluate its performance of emotion recognition across different datasets and emotion l...