July 9, 2024
Similar papers 5
February 15, 2024
In collider experiments, the kinematic reconstruction of heavy, short-lived particles is vital for precision tests of the Standard Model and in searches for physics beyond it. Performing kinematic reconstruction in collider events with many final-state jets, such as the all-hadronic decay of topantitop quark pairs, is challenging. We present HyPER, a graph neural network that uses blended graph-hypergraph representation learning to reconstruct parent particles from sets of fi...
January 13, 2022
Reinforcement Learning and recently Deep Reinforcement Learning are popular methods for solving sequential decision making problems modeled as Markov Decision Processes. RL modeling of a problem and selecting algorithms and hyper-parameters require careful considerations as different configurations may entail completely different performances. These considerations are mainly the task of RL experts; however, RL is progressively becoming popular in other fields where the resear...
September 12, 2019
We introduce an approach for imposing physically motivated inductive biases on graph networks to learn interpretable representations and improved zero-shot generalization. Our experiments show that our graph network models, which implement this inductive bias, can learn message representations equivalent to the true force vector when trained on n-body gravitational and spring-like simulations. We use symbolic regression to fit explicit algebraic equations to our trained model...
August 12, 2020
Training a multi-agent reinforcement learning (MARL) model with a sparse reward is generally difficult because numerous combinations of interactions among agents induce a certain outcome (i.e., success or failure). Earlier studies have tried to resolve this issue by employing an intrinsic reward to induce interactions that are helpful for learning an effective policy. However, this approach requires extensive prior knowledge for designing an intrinsic reward. To train the MAR...
December 9, 2022
The findable, accessible, interoperable, and reusable (FAIR) data principles provide a framework for examining, evaluating, and improving how data is shared to facilitate scientific discovery. Generalizing these principles to research software and other digital products is an active area of research. Machine learning (ML) models -- algorithms that have been trained on data without being explicitly programmed -- and more generally, artificial intelligence (AI) models, are an i...
September 21, 2020
Automated machine learning (AutoML) has seen a resurgence in interest with the boom of deep learning over the past decade. In particular, Neural Architecture Search (NAS) has seen significant attention throughout the AutoML research community, and has pushed forward the state-of-the-art in a number of neural models to address grid-like data such as texts and images. However, very litter work has been done about Graph Neural Networks (GNN) learning on unstructured network data...
January 17, 2024
Thousands of person-years have been invested in searches for New Physics (NP), the majority of them motivated by theoretical considerations. Yet, no evidence of beyond the Standard Model (BSM) physics has been found. This suggests that model-agnostic searches might be an important key to explore NP, and help discover unexpected phenomena which can inspire future theoretical developments. A possible strategy for such searches is identifying asymmetries between data samples tha...
July 29, 2024
We develop a machine learning method for mapping data originating from both Standard Model processes and various theories beyond the Standard Model into a unified representation (latent) space while conserving information about the relationship between the underlying theories. We apply our method to three examples of new physics at the LHC of increasing complexity, showing that models can be clustered according to their LHC phenomenology: different models are mapped to distin...
June 5, 2019
We present a method to generate directed acyclic graphs (DAGs) using deep reinforcement learning, specifically deep Q-learning. Generating graphs with specified structures is an important and challenging task in various application fields, however most current graph generation methods produce graphs with undirected edges. We demonstrate that this method is capable of generating DAGs with topology and node types satisfying specified criteria in highly sparse reward environment...
November 9, 2020
In practice, it is quite common to face combinatorial optimization problems which contain uncertainty along with non-determinism and dynamicity. These three properties call for appropriate algorithms; reinforcement learning (RL) is dealing with them in a very natural way. Today, despite some efforts, most real-life combinatorial optimization problems remain out of the reach of reinforcement learning algorithms. In this paper, we propose a reinforcement learning approach to ...