July 9, 2024
Similar papers 4
December 13, 2021
In this work, we propose an end-to-end graph network that learns forward and inverse models of particle-based physics using interpretable inductive biases. Physics-informed neural networks are often engineered to solve specific problems through problem-specific regularization and loss functions. Such explicit learning biases the network to learn data specific patterns and may require a change in the loss function or neural network architecture hereby limiting their generaliza...
March 25, 2022
For the purpose of minimizing the number of sample model evaluations, we propose and study algorithms that utilize (sequential) versions of likelihood-to-evidence ratio neural estimation.We apply our algorithms to a supersymmetric interpretation of the anomalous muon magnetic dipole moment in the context of a phenomenological minimal supersymmetric extension of the standard model, and recover non-trivial models in an experimentally-constrained theory space. Finally we summari...
April 22, 2019
Graph Neural Networks (GNNs) have been popularly used for analyzing non-Euclidean data such as social network data and biological data. Despite their success, the design of graph neural networks requires a lot of manual work and domain knowledge. In this paper, we propose a Graph Neural Architecture Search method (GraphNAS for short) that enables automatic search of the best graph neural architecture based on reinforcement learning. Specifically, GraphNAS first uses a recurre...
July 9, 2020
One of the goals of current particle physics research is to obtain evidence for new physics, that is, physics beyond the Standard Model (BSM), at accelerators such as the Large Hadron Collider (LHC) at CERN. The searches for new physics are often guided by BSM theories that depend on many unknown parameters, which, in some cases, makes testing their predictions difficult. In this paper, machine learning is used to model the mapping from the parameter space of the phenomenolog...
April 29, 2020
Deep RL approaches build much of their success on the ability of the deep neural network to generate useful internal representations. Nevertheless, they suffer from a high sample-complexity and starting with a good input representation can have a significant impact on the performance. In this paper, we exploit the fact that the underlying Markov decision process (MDP) represents a graph, which enables us to incorporate the topological information for effective state represent...
March 21, 2017
In all but the most trivial optimization problems, the structure of the solutions exhibit complex interdependencies between the input parameters. Decades of research with stochastic search techniques has shown the benefit of explicitly modeling the interactions between sets of parameters and the overall quality of the solutions discovered. We demonstrate a novel method, based on learning deep networks, to model the global landscapes of optimization problems. To represent the ...
June 7, 2020
Learning distributions of graphs can be used for automatic drug discovery, molecular design, complex network analysis, and much more. We present an improved framework for learning generative models of graphs based on the idea of deep state machines. To learn state transition decisions we use a set of graph and node embedding techniques as memory of the state machine. Our analysis is based on learning the distribution of random graph generators for which we provide statistic...
March 31, 2023
Recent developments in Machine Learning approaches for modelling physical systems have begun to mirror the past development of numerical methods in the computational sciences. In this survey, we begin by providing an example of this with the parallels between the development trajectories of graph neural network acceleration for physical simulations and particle-based approaches. We then give an overview of simulation approaches, which have not yet found their way into state-o...
March 11, 2021
Models of physics beyond the Standard Model often contain a large number of parameters. These form a high-dimensional space that is computationally intractable to fully explore. Experimental constraints project onto a subspace of viable parameters, but mapping these constraints to the underlying parameters is also typically intractable. Instead, physicists often resort to scanning small subsets of the full parameter space and testing for experimental consistency. We propose a...
March 11, 2019
In the space of only a few years, deep generative modeling has revolutionized how we think of artificial creativity, yielding autonomous systems which produce original images, music, and text. Inspired by these successes, researchers are now applying deep generative modeling techniques to the generation and optimization of molecules - in our review we found 45 papers on the subject published in the past two years. These works point to a future where such systems will be used ...