September 23, 2024
Similar papers 4
September 15, 2023
This paper presents the geometric aspect of the autoencoder framework, which, despite its importance, has been relatively less recognized. Given a set of high-dimensional data points that approximately lie on some lower-dimensional manifold, an autoencoder learns the \textit{manifold} and its \textit{coordinate chart}, simultaneously. This geometric perspective naturally raises inquiries like "Does a finite set of data points correspond to a single manifold?" or "Is there onl...
July 25, 2024
This work introduces IsUMap, a novel manifold learning technique that enhances data representation by integrating aspects of UMAP and Isomap with Vietoris-Rips filtrations. We present a systematic and detailed construction of a metric representation for locally distorted metric spaces that captures complex data structures more accurately than the previous schemes. Our approach addresses limitations in existing methods by accommodating non-uniform data distributions and intric...
February 15, 2018
For manifold learning, it is assumed that high-dimensional sample/data points are embedded on a low-dimensional manifold. Usually, distances among samples are computed to capture an underlying data structure. Here we propose a metric according to angular changes along a geodesic line, thereby reflecting the underlying shape-oriented information or a topological similarity between high- and low-dimensional representations of a data cloud. Our results demonstrate the feasibilit...
June 18, 2022
This paper presents the computational challenge on differential geometry and topology that was hosted within the ICLR 2022 workshop ``Geometric and Topological Representation Learning". The competition asked participants to provide implementations of machine learning algorithms on manifolds that would respect the API of the open-source software Geomstats (manifold part) and Scikit-Learn (machine learning part) or PyTorch. The challenge attracted seven teams in its two month d...
September 9, 2023
Recent research indicates that the performance of machine learning models can be improved by aligning the geometry of the latent space with the underlying data structure. Rather than relying solely on Euclidean space, researchers have proposed using hyperbolic and spherical spaces with constant curvature, or combinations thereof, to better model the latent space and enhance model performance. However, little attention has been given to the problem of automatically identifying...
October 11, 2023
In the realm of robotics, numerous downstream robotics tasks leverage machine learning methods for processing, modeling, or synthesizing data. Often, this data comprises variables that inherently carry geometric constraints, such as the unit-norm condition of quaternions representing rigid-body orientations or the positive definiteness of stiffness and manipulability ellipsoids. Handling such geometric constraints effectively requires the incorporation of tools from different...
January 22, 2019
We propose a fast, simple and robust algorithm for computing shortest paths and distances on Riemannian manifolds learned from data. This amounts to solving a system of ordinary differential equations (ODEs) subject to boundary conditions. Here standard solvers perform poorly because they require well-behaved Jacobians of the ODE, and usually, manifolds learned from data imply unstable and ill-conditioned Jacobians. Instead, we propose a fixed-point iteration scheme for solvi...
December 22, 2022
Estimating the pose of an object from a monocular image is an inverse problem fundamental in computer vision. The ill-posed nature of this problem requires incorporating deformation priors to solve it. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a powerful and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface recons...
October 1, 2022
Geometric deep learning has gained much attention in recent years due to more available data acquired from non-Euclidean domains. Some examples include point clouds for 3D models and wireless sensor networks in communications. Graphs are common models to connect these discrete data points and capture the underlying geometric structure. With the large amount of these geometric data, graphs with arbitrarily large size tend to converge to a limit model -- the manifold. Deep neur...
April 7, 2020
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Among others, manifolds come equipped with families of Riemannian metrics, with associated exponential and logarithmic maps, geodesics and parallel transport. Statistics and lea...