October 21, 2024
A prevalent assumption regarding real-world data is that it lies on or close to a low-dimensional manifold. When deploying a neural network on data manifolds, the required size, i.e., the number of neurons of the network, heavily depends on the intricacy of the underlying latent manifold. While significant advancements have been made in understanding the geometric attributes of manifolds, it's essential to recognize that topology, too, is a fundamental characteristic of manif...
August 10, 2024
Topological deep learning (TDL) facilitates learning from data represented by topological structures. The primary model utilized in this setting is higher-order message-passing (HOMP), which extends traditional graph message-passing neural networks (MPNN) to diverse topological domains. Given the significant expressivity limitations of MPNNs, our paper aims to explore both the strengths and weaknesses of HOMP's expressive power and subsequently design novel architectures to a...
August 31, 2018
We show how, given a sufficiently large point cloud sampled from an embedded 2-manifold in $\mathbb{R}^n$, we may obtain a global representation as a cell complex with vertices given by a representative subset of the point cloud. The vertex spacing is based on obtaining an approximation of the tangent plane which insures that the vertex accurately summarizes the local data. Using results from topological graph theory, we couple our cell complex representation with the known C...
August 7, 2017
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of gr...
June 4, 2024
Topological Data Analysis (TDA) allows us to extract powerful topological and higher-order information on the global shape of a data set or point cloud. Tools like Persistent Homology or the Euler Transform give a single complex description of the global structure of the point cloud. However, common machine learning applications like classification require point-level information and features to be available. In this paper, we bridge this gap and propose a novel method to ext...
October 23, 2024
This overview article makes the case for how topological concepts can enrich research in machine learning. Using the Euler Characteristic Transform (ECT), a geometrical-topological invariant, as a running example, I present different use cases that result in more efficient models for analyzing point clouds, graphs, and meshes. Moreover, I outline a vision for how topological concepts could be used in the future, comprising (1) the learning of functions on topological spaces, ...
February 29, 2024
Network data has become widespread, larger, and more complex over the years. Traditional network data is dyadic, capturing the relations among pairs of entities. With the need to model interactions among more than two entities, significant research has focused on higher-order networks and ways to represent, analyze, and learn from them. There are two main directions to studying higher-order networks. One direction has focused on capturing higher-order patterns in traditional ...
December 13, 2023
Geometric deep learning extends deep learning to incorporate information about the geometry and topology data, especially in complex domains like graphs. Despite the popularity of message passing in this field, it has limitations such as the need for graph rewiring, ambiguity in interpreting data, and over-smoothing. In this paper, we take a different approach, focusing on leveraging geometric information from simplicial complexes embedded in $\mathbb{R}^n$ using node coordin...
August 22, 2021
This paper presents the computational challenge on differential geometry and topology that happened within the ICLR 2021 workshop "Geometric and Topological Representation Learning". The competition asked participants to provide creative contributions to the fields of computational geometry and topology through the open-source repositories Geomstats and Giotto-TDA. The challenge attracted 16 teams in its two month duration. This paper describes the design of the challenge and...
February 27, 2023
Analyzing embedded simplicial complexes, such as triangular meshes and graphs, is an important problem in many fields. We propose a new approach for analyzing embedded simplicial complexes in a subdivision-invariant and isometry-invariant way using only topological and geometric information. Our approach is based on creating and analyzing sufficient statistics and uses a graph neural network. We demonstrate the effectiveness of our approach using a synthetic mesh data set.