October 7, 2024
Similar papers 2
August 22, 2007
In this paper, we obtain an unconditional density theorem concerning the low-lying zeros of Hasse-Weil L-functions for a family of elliptic curves. From this together with the Riemann hypothesis for these L-functions, we infer the majorant of 27/14 (which is strictly less than 2) for the average rank of the elliptic curves in the family under consideration. This upper bound for the average rank enables us to deduce that, under the same assumption, a positive proportion of ell...
August 19, 2007
We obtain new average results on the conjectures of Lang-Trotter and Sato-Tate about elliptic curves.
January 30, 2023
In this paper we propose conjectures that assert that, the sequence of Frobenius angles of a given elliptic curve over $\mathbf{Q}$ without complex multiplication is pseudorandom, in other words that the Frobenius angles are statistically independently distributed with respect to the Sato-Tate measure. Numerical evidences are presented to support the conjectures.
April 22, 2020
We determine the Sato-Tate groups and prove the generalized Sato-Tate conjecture for the Jacobians of curves of the form $$ y^2=x^p-1 \text{ and } y^2=x^{2p}-1,$$ where $p$ is an odd prime. Our results rely on the fact the Jacobians of these curves are nondegenerate, a fact that we prove in the paper. Furthermore, we compute moment statistics associated to the Sato-Tate groups. These moment statistics can be used to verify the equidistribution statement of the generalized Sat...
October 16, 2019
In this paper we study a new conjecture concerning Kato's Euler system of zeta elements for elliptic curves $E$ over $\mathbb{Q}$. This conjecture, which we refer to as the `Generalized Perrin-Riou Conjecture', predicts a precise congruence relation between a `Darmon-type derivative' of the zeta element of $E$ over an arbitrary real abelian field and the critical value of an appropriate higher derivative of the $L$-function of $E$ over $\mathbb{Q}$. We prove that the conjectu...
January 1, 2013
Based on the Lagarias-Odlyzko effectivization of the Chebotarev density theorem, Kumar Murty gave an effective version of the Sato-Tate conjecture for an elliptic curve conditional on analytic continuation and Riemann hypothesis for the symmetric power $L$-functions. We use Murty's analysis to give a similar conditional effectivization of the generalized Sato-Tate conjecture for an arbitrary motive. As an application, we give a conditional upper bound of the form $O((\log N)^...
December 15, 2021
In this paper, we consider the moments of the trace of Frobenius of elliptic curves if the trace is restricted to a fixed arithmetic progression. We determine the asymptotic behavior for the ratio of the $(2k+1)$-th moment to the zeroeth moment as the size of the finite field $\mathbb{F}_{p^r}$ goes to infinity. These results follow from similar asymptotic formulas relating sums and moments of Hurwitz class numbers where the sums are restricted to certain arithmetic progressi...
November 28, 2017
This is an introduction to a probabilistic model for the arithmetic of elliptic curves, a model developed in a series of articles of the author with Bhargava, Kane, Lenstra, Park, Rains, Voight, and Wood. We discuss the theoretical evidence for the model, and we make predictions about elliptic curves based on corresponding theorems proved about the model. In particular, the model suggests that all but finitely many elliptic curves over $\mathbb{Q}$ have rank $\le 21$, which w...
March 9, 2017
Let $A$ be an abelian variety defined over a number field and let $G$ denote its Sato-Tate group. Under the assumption of certain standard conjectures on $L$-functions attached to the irreducible representations of $G$, we study the convergence rate of any virtual selfdual character of $G$. We find that this convergence rate is dictated by several arithmetic invariants of $A$, such as its rank or its Sato-Tate group $G$. The results are consonant with some previous experiment...
April 16, 2010
Extending recent work of others, we provide effective bounds on the family of all elliptic curves and one-parameter families of elliptic curves modulo p (for p prime tending to infinity) obeying the Sato-Tate Law. We present two methods of proof. Both use the framework of Murty-Sinha; the first involves only knowledge of the moments of the Fourier coefficients of the L-functions and combinatorics, and saves a logarithm, while the second requires a Sato-Tate law. Our purpose i...