September 20, 2024
Similar papers 4
December 1, 2022
Topological data analysis (TDA) is a branch of computational mathematics, bridging algebraic topology and data science, that provides compact, noise-robust representations of complex structures. Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture, resulting in high-dimensional, difficult-to-interpret internal representations of input data. As DNNs become more ubiquitous across multiple sectors ...
October 21, 2024
A prevalent assumption regarding real-world data is that it lies on or close to a low-dimensional manifold. When deploying a neural network on data manifolds, the required size, i.e., the number of neurons of the network, heavily depends on the intricacy of the underlying latent manifold. While significant advancements have been made in understanding the geometric attributes of manifolds, it's essential to recognize that topology, too, is a fundamental characteristic of manif...
July 31, 2019
Topological data analysis is becoming increasingly relevant to support the analysis of unstructured data sets. A common assumption in data analysis is that the data set is a sample---not necessarily a uniform one---of some high-dimensional manifold. In such cases, persistent homology can be successfully employed to extract features, remove noise, and compare data sets. The underlying problems in some application domains, however, turn out to represent multiple manifolds with ...
May 19, 2022
Nowadays, Machine Learning and Deep Learning methods have become the state-of-the-art approach to solve data classification tasks. In order to use those methods, it is necessary to acquire and label a considerable amount of data; however, this is not straightforward in some fields, since data annotation is time consuming and might require expert knowledge. This challenge can be tackled by means of semi-supervised learning methods that take advantage of both labelled and unlab...
June 4, 2024
Topological Data Analysis (TDA) allows us to extract powerful topological and higher-order information on the global shape of a data set or point cloud. Tools like Persistent Homology or the Euler Transform give a single complex description of the global structure of the point cloud. However, common machine learning applications like classification require point-level information and features to be available. In this paper, we bridge this gap and propose a novel method to ext...
April 13, 2020
We study how the topology of a data set $M = M_a \cup M_b \subseteq \mathbb{R}^d$, representing two classes $a$ and $b$ in a binary classification problem, changes as it passes through the layers of a well-trained neural network, i.e., with perfect accuracy on training set and near-zero generalization error ($\approx 0.01\%$). The goal is to shed light on two mysteries in deep neural networks: (i) a nonsmooth activation function like ReLU outperforms a smooth one like hyperbo...
September 4, 2024
Topological Machine Learning (TML) is an emerging field that leverages techniques from algebraic topology to analyze complex data structures in ways that traditional machine learning methods may not capture. This tutorial provides a comprehensive introduction to two key TML techniques, persistent homology and the Mapper algorithm, with an emphasis on practical applications. Persistent homology captures multi-scale topological features such as clusters, loops, and voids, while...
September 22, 2023
This paper presents the first approach to visualize the importance of topological features that define classes of data. Topological features, with their ability to abstract the fundamental structure of complex data, are an integral component of visualization and analysis pipelines. Although not all topological features present in data are of equal importance. To date, the default definition of feature importance is often assumed and fixed. This work shows how proven explainab...
October 12, 2021
Persistent Homology (PH) has been successfully used to train networks to detect curvilinear structures and to improve the topological quality of their results. However, existing methods are very global and ignore the location of topological features. In this paper, we remedy this by introducing a new filtration function that fuses two earlier approaches: thresholding-based filtration, previously used to train deep networks to segment medical images, and filtration with height...
July 13, 2017
Inferring topological and geometrical information from data can offer an alternative perspective on machine learning problems. Methods from topological data analysis, e.g., persistent homology, enable us to obtain such information, typically in the form of summary representations of topological features. However, such topological signatures often come with an unusual structure (e.g., multisets of intervals) that is highly impractical for most machine learning techniques. Whil...