September 20, 2024
Similar papers 5
July 6, 2018
This paper provides an overview of modern digital geometry and topology through mathematical principles, algorithms, and measurements. It also covers recent developments in the applications of digital geometry and topology including image processing, computer vision, and data science. Recent research strongly showed that digital geometry has made considerable contributions to modelings and algorithms in image segmentation, algorithmic analysis, and BigData analytics.
July 25, 2022
In this paper we investigate Deep Learning Models using topological dynamical systems, index theory, and computational homology. These mathematical machinery was invented initially by Henri Poincare around 1900 and developed over time to understand shapes and dynamical systems whose structure and behavior is too complicated to solve for analytically but can be understood via global relationships. In particular, we show how individual neurons in a neural network can correspond...
May 10, 2023
We test the efficiency of applying Geometric Deep Learning to the problems in low-dimensional topology in a certain simple setting. Specifically, we consider the class of 3-manifolds described by plumbing graphs and use Graph Neural Networks (GNN) for the problem of deciding whether a pair of graphs give homeomorphic 3-manifolds. We use supervised learning to train a GNN that provides the answer to such a question with high accuracy. Moreover, we consider reinforcement learni...
December 29, 2024
While conventional computer vision emphasizes pixel-level and feature-based objectives, medical image analysis of intricate biological structures necessitates explicit representation of their complex topological properties. Despite their successes, deep learning models often struggle to accurately capture the connectivity and continuity of fine, sometimes pixel-thin, yet critical structures due to their reliance on implicit learning from data. Such shortcomings can significan...
March 24, 2021
The field of mathematical morphology offers well-studied techniques for image processing. In this work, we view morphological operations through the lens of persistent homology, a tool at the heart of the field of topological data analysis. We demonstrate that morphological operations naturally form a multiparameter filtration and that persistent homology can then be used to extract information about both topology and geometry in the images as well as to automate methods for ...
December 24, 2024
We present STITCH, a novel approach for neural implicit surface reconstruction of a sparse and irregularly spaced point cloud while enforcing topological constraints (such as having a single connected component). We develop a new differentiable framework based on persistent homology to formulate topological loss terms that enforce the prior of a single 2-manifold object. Our method demonstrates excellent performance in preserving the topology of complex 3D geometries, evident...
November 10, 2023
In this work we use the persistent homology method, a technique in topological data analysis (TDA), to extract essential topological features from the data space and combine them with deep learning features for classification tasks. In TDA, the concepts of complexes and filtration are building blocks. Firstly, a filtration is constructed from some complex. Then, persistent homology classes are computed, and their evolution along the filtration is visualized through the persis...
March 8, 2024
This paper presents our experiments to quantify the manifolds learned by ML models (in our experiment, we use a GAN model) as they train. We compare the manifolds learned at each epoch to the real manifolds representing the real data. To quantify a manifold, we study the intrinsic dimensions and topological features of the manifold learned by the ML model, how these metrics change as we continue to train the model, and whether these metrics convergence over the course of trai...
September 26, 2023
In this work, we develop a pipeline that associates Persistence Diagrams to digital data via the most appropriate filtration for the type of data considered. Using a grid search approach, this pipeline determines optimal representation methods and parameters. The development of such a topological pipeline for Machine Learning involves two crucial steps that strongly affect its performance: firstly, digital data must be represented as an algebraic object with a proper associat...
August 7, 2017
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of gr...