October 30, 2024
Similar papers 3
July 24, 2020
Gravitational wave observatories targeted for compact binary coalescence, such as LIGO and VIRGO, require various theoretical inputs for their efficient detection. One of such inputs are analytical description of binary dynamics at sufficiently separated orbital scales, commonly known as post-Newtonian dynamics. One approach for determining such two-body effective Hamiltonians is to use quantum scattering amplitudes. This dissertation aims at an improved understanding of cl...
April 26, 2023
We calculate the scattering of two rotating objects with the linear-in-curvature spin-induced multipoles of Kerr black holes at $\mathcal{O}(G^2)$ and all orders in the spins of both objects. This is done including the complete set of contact terms potentially relevant to Kerr-black-hole scattering at $\mathcal{O}(G^2)$. As such, Kerr black holes should be described by this scattering amplitude for a specific choice of values for the contact-term coefficients. The inclusion o...
November 30, 2023
Previously the linearized stress tensor of a stationary Kerr black hole has been used to determine some of the values of gravitational couplings for a spinning black hole to linear order in the Riemann tensor in the action (worldline or quantum field theory). In particular, the couplings on operators containing derivative structures of the form $(S\cdot\nabla)^n$ acting on the Riemann tensor were fixed, with $S^\mu$ the spin vector of the black hole. In this paper we find tha...
July 21, 2021
The scattering of massless waves of helicity $|h|=0,\frac{1}{2},1$ in Schwarzschild and Kerr backgrounds is revisited in the long-wavelenght regime. Using a novel description of such backgrounds in terms of gravitating massive particles, we compute classical wave scattering in terms of $2\to 2$ QFT amplitudes in flat space, to all orders in spin. The results are Newman-Penrose amplitudes which are in direct correspondence with solutions of the Regge-Wheeler/Teukolsky equation...
December 10, 2023
We present a novel study of Kerr Compton amplitudes in a partial wave basis in terms of the Nekrasov-Shatashvili (NS) function of the \textit{confluent Heun equation} (CHE). Remarkably, NS-functions enjoy analytic properties and symmetries that are naturally inherited by the Compton amplitudes. Based on this, we characterize the analytic dependence of the Compton phase-shift in the Kerr spin parameter and provide a direct comparison to the standard post-Minkowskian (PM) pertu...
November 2, 2023
The quantum off-shell recursion provides an efficient and universal computational tool for loop-level scattering amplitudes. In this work, we present a new comprehensive computational framework based on the quantum off-shell recursion for binary black hole systems. Using the quantum perturbiner method, we derive the recursions and solve them explicitly up to two-loop order. We develop a power-counting prescription that enables the straightforward separation of classical diagr...
September 29, 2023
We provide the analytic waveform in time domain for the scattering of two Kerr black holes at leading order in the post-Minkowskian expansion and up to fourth order in both spins. The result is obtained by the generalization of the KMOC formalism to radiative observables, combined with the analytic continuation of the five-point scattering amplitude to complex kinematics. We use analyticity arguments to express the waveform directly in terms of the three-point coupling of the...
October 6, 2023
We compute the classical tree-level five-point amplitude for the two-to-two scattering of spinning celestial objects with the emission of a graviton. Using this five-point amplitude, we then turn to the computation of the leading-order time-domain gravitational waveform. The method we describe is suitable for arbitrary values of classical spin of Kerr black holes and does not require any expansion in powers of the spin. In this paper we illustrate it in the simpler case of th...
June 2, 2023
Using the ${\mathcal N}=1$ supersymmetric, spinning worldline quantum field theory formalism we compute the conservative spin-orbit part of the momentum impulse $\Delta p_i^\mu$, spin kick $\Delta S_i^\mu$ and scattering angle $\theta$ from the scattering of two spinning massive bodies (black holes or neutron stars) up to fourth post-Minkowskian (PM) order. These three-loop results extend the state-of-the-art for generically spinning binaries from 3PM to 4PM. They are obtaine...
We develop massive higher-spin theory as a framework for describing dynamics of rotating compact objects, such as Kerr black holes. In this paper, we explore gauge interactions up to quartic order and corresponding Compton amplitudes of higher-spin massive objects coupled to electromagnetism and Yang-Mills theory. Their classical counterparts are known as root-Kerr gauge-theory solutions, whose amplitudes are closely related to those of Kerr black holes. We use three distinct...