December 17, 2024
The renormalization group (RG) is a powerful theoretical framework developed to consistently transform the description of configurations of systems with many degrees of freedom, along with the associated model parameters and coupling constants, across different levels of resolution. It also provides a way to identify critical points of phase transitions and study the system's behaviour around them by distinguishing between relevant and irrelevant details, the latter being unnecessary to describe the emergent macroscopic properties. In traditional physical applications, the RG largely builds on the notions of homogeneity, symmetry, geometry and locality to define metric distances, scale transformations and self-similar coarse-graining schemes. More recently, various approaches have tried to extend RG concepts to the ubiquitous realm of complex networks where explicit geometric coordinates do not necessarily exist, nodes and subgraphs can have very different properties, and homogeneous lattice-like symmetries are absent. The strong heterogeneity of real-world networks significantly complicates the definition of consistent renormalization procedures. In this review, we discuss the main attempts, the most important advances, and the remaining open challenges on the road to network renormalization.
Similar papers 1
June 4, 2024
The renormalization group (RG) constitutes a fundamental framework in modern theoretical physics. It allows the study of many systems showing states with large-scale correlations and their classification in a relatively small set of universality classes. RG is the most powerful tool for investigating organizational scales within dynamic systems. However, the application of RG techniques to complex networks has presented significant challenges, primarily due to the intricate i...
March 12, 2024
While renormalization groups are fundamental in physics, renormalization of complex networks remains vague in its conceptual definition and methodology. Here, we propose a novel strategy to renormalize complex networks. Rather than resorting to handling the bare structure of a network, we overlay it with a readily renormalizable physical model, which reflects real-world scenarios with a broad generality. From the renormalization of the overlying system, we extract a rigorous ...
November 17, 2008
Complex networks have acquired a great popularity in recent years, since the graph representation of many natural, social and technological systems is often very helpful to characterize and model their phenomenology. Additionally, the mathematical tools of statistical physics have proven to be particularly suitable for studying and understanding complex networks. Nevertheless, an important obstacle to this theoretical approach is still represented by the difficulties to draw ...
March 19, 2024
The Renormalization Group is crucial for understanding systems across scales, including complex networks. Renormalizing networks via network geometry, a framework in which their topology is based on the location of nodes in a hidden metric space, is one of the foundational approaches. However, the current methods assume that the geometric coupling is strong, neglecting weak coupling in many real networks. This paper extends renormalization to weak geometric coupling, showing ...
June 27, 2024
Scale invariance profoundly influences the dynamics and structure of complex systems, spanning from critical phenomena to network architecture. Here, we propose a precise definition of scale-invariant networks by leveraging the concept of a constant entropy loss rate across scales in a renormalization-group coarse-graining setting. This framework enables us to differentiate between scale-free and scale-invariant networks, revealing distinct characteristics within each class. ...
June 1, 2017
Multiple scales coexist in complex networks. However, the small world property makes them strongly entangled. This turns the elucidation of length scales and symmetries a defiant challenge. Here, we define a geometric renormalization group for complex networks and use the technique to investigate networks as viewed at different scales. We find that real networks embedded in a hidden metric space show geometric scaling, in agreement with the renormalizability of the underlying...
February 14, 2023
Complex networks can model a range of different systems, from the human brain to social connections. Some of those networks have a large number of nodes and links, making it impractical to analyze them directly. One strategy to simplify these systems is by creating miniaturized versions of the networks that keep their main properties. A convenient tool that applies that strategy is the renormalization group (RG), a methodology used in statistical physics to change the scales ...
The renormalization group is the cornerstone of the modern theory of universality and phase transitions, a powerful tool to scrutinize symmetries and organizational scales in dynamical systems. However, its network counterpart is particularly challenging due to correlations between intertwined scales. To date, the explorations are based on hidden geometries hypotheses. Here, we propose a Laplacian RG diffusion-based picture in complex networks, defining both the Kadanoff supe...
March 25, 2008
Recently, it has been claimed that some complex networks are self-similar under a convenient renormalization procedure. We present a general method to study renormalization flows in graphs. We find that the behavior of some variables under renormalization, such as the maximum number of connections of a node, obeys simple scaling laws, characterized by critical exponents. This is true for any class of graphs, from random to scale-free networks, from lattices to hierarchical gr...
June 1, 2023
Graph Neural Networks (GNNs) have become essential for studying complex data, particularly when represented as graphs. Their value is underpinned by their ability to reflect the intricacies of numerous areas, ranging from social to biological networks. GNNs can grapple with non-linear behaviors, emerging patterns, and complex connections; these are also typical characteristics of complex systems. The renormalization group (RG) theory has emerged as the language for studying c...