January 27, 2020
Recently, the concept of geometric renormalization group provides a good approach for studying the structural symmetry and functional invariance of complex networks. Along this line, we systematically investigate the finite-size scaling of structural and dynamical observables in geometric renormalization flows of synthetic and real evolutionary networks. Our results show that these observables can be well characterized by a certain scaling function. Specifically, we show that...
September 10, 2016
We apply the renormalization group theory to the dynamical systems with the simplest example of basic biological motifs. This includes the interpretation of complex networks as the perturbation to simple network. This is the first step to build our original framework to infer the properties of biological networks, and the basis work to see its effectiveness to actual complex systems.
September 26, 2009
We show that renormalization group (RG) theory applied to complex networks are useful to classify network topologies into universality classes in the space of configurations. The RG flow readily identifies a small-world/fractal transition by finding (i) a trivial stable fixed point of a complete graph, (ii) a non-trivial point of a pure fractal topology that is stable or unstable according to the amount of long-range links in the network, and (iii) another stable point of a f...
September 23, 2020
Systems with lattice geometry can be renormalized exploiting their coordinates in metric space, which naturally define the coarse-grained nodes. By contrast, complex networks defy the usual techniques, due to their small-world character and lack of explicit geometric embedding. Current network renormalization approaches require strong assumptions (e.g. community structure, hyperbolicity, scale-free topology), thus remaining incompatible with generic graphs and ordinary lattic...
July 18, 2011
Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order phase transitions call for special techniques. We set up a renormalization group scheme by expanding an arbitrary scalar field living on the nodes of an arbitrary network, in terms of the eigenvectors of the normalized graph Laplac...
January 20, 2024
We propose a cross-order Laplacian renormalization group (X-LRG) scheme for arbitrary higher-order networks. The renormalization group is a pillar of the theory of scaling, scale-invariance, and universality in physics. An RG scheme based on diffusion dynamics was recently introduced for complex networks with dyadic interactions. Despite mounting evidence of the importance of polyadic interactions, we still lack a general RG scheme for higher-order networks. Our approach uses...
August 1, 2008
Nowadays, scaling methods for general large-scale complex networks have been developed. We proposed a new scaling scheme called "two-site scaling". This scheme was applied iteratively to various networks, and we observed how the degree distribution of the network changes by two-site scaling. In particular, networks constructed by the BA algorithm behave differently from the networks observed in the nature. In addition, an iterative scaling scheme can define a new renormalizin...
July 3, 2023
The geometric renormalization technique for complex networks has successfully revealed the multiscale self-similarity of real network topologies and can be applied to generate replicas at different length scales. In this letter, we extend the geometric renormalization framework to weighted networks, where the intensities of the interactions play a crucial role in their structural organization and function. Our findings demonstrate that weights in real networks exhibit multisc...
March 3, 2005
Complex networks have been studied extensively due to their relevance to many real systems as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social networks \cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real networks are called ``scale-free'' because they show a power-law distribution of the number of links per node \cite{ab-review,barabasi1999,faloutsos}. However, it is widely believed that complex networks are not ...
January 9, 2020
Real networks are finite metric spaces. Yet the geometry induced by shortest path distances in a network is definitely not its only geometry. Other forms of network geometry are the geometry of latent spaces underlying many networks, and the effective geometry induced by dynamical processes in networks. These three approaches to network geometry are all intimately related, and all three of them have been found to be exceptionally efficient in discovering fractality, scale-inv...