February 4, 2016
High-dimensional predictive models, those with more measurements than observations, require regularization to be well defined, perform well empirically, and possess theoretical guarantees. The amount of regularization, often determined by tuning parameters, is integral to achieving good performance. One can choose the tuning parameter in a variety of ways, such as through resampling methods or generalized information criteria. However, the theory supporting many regularized p...
March 19, 2007
Anomalies persist in the foundations of ridge regression as set forth in Hoerl and Kennard (1970) and subsequently. Conventional ridge estimators and their properties do not follow on constraining lengths of solution vectors using LaGrange's method, as claimed. Estimators so constrained have singular distributions; the proposed solutions are not necessarily minimizing; and heretofore undiscovered bounds are exhibited for the ridge parameter. None of the considerable literatur...
May 10, 2021
This survey is meant to provide an introduction to linear models and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to ordinary least squares. In machine learning, the output is usually a nonlinear function of the input. Deep learning even aims to find a nonlinear dependence with many layers which require a large amount of computation. However, most of these algorithms build upon simple linear models. We then describe ...
December 31, 2009
In this article we study post-model selection estimators that apply ordinary least squares (OLS) to the model selected by first-step penalized estimators, typically Lasso. It is well known that Lasso can estimate the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show that the OLS post-Lasso estimator performs at least as well as Lasso in terms of the rate of convergence, and has the advantage of a smaller bias. Remarkably, t...
June 30, 2017
The goal of this paper is to contrast and survey the major advances in two of the most commonly used high-dimensional techniques, namely, the Lasso and horseshoe regularization. Lasso is a gold standard for predictor selection while horseshoe is a state-of-the-art Bayesian estimator for sparse signals. Lasso is fast and scalable and uses convex optimization whilst the horseshoe is non-convex. Our novel perspective focuses on three aspects: (i) theoretical optimality in high d...
October 18, 2014
High-dimensional prediction typically comprises two steps: variable selection and subsequent least-squares refitting on the selected variables. However, the standard variable selection procedures, such as the lasso, hinge on tuning parameters that need to be calibrated. Cross-validation, the most popular calibration scheme, is computationally costly and lacks finite sample guarantees. In this paper, we introduce an alternative scheme, easy to implement and both computationall...
August 28, 2007
Rejoinder: Fisher Lecture: Dimension Reduction in Regression [arXiv:0708.3774]
January 21, 2022
We consider the problem of finding tuned regularized parameter estimators for linear models. We start by showing that three known optimal linear estimators belong to a wider class of estimators that can be formulated as a solution to a weighted and constrained minimization problem. The optimal weights, however, are typically unknown in many applications. This begs the question, how should we choose the weights using only the data? We propose using the covariance fitting SPICE...
October 27, 2008
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.
November 10, 2015
In this work we propose a framework for constructing goodness of fit tests in both low and high-dimensional linear models. We advocate applying regression methods to the scaled residuals following either an ordinary least squares or Lasso fit to the data, and using some proxy for prediction error as the final test statistic. We call this family Residual Prediction (RP) tests. We show that simulation can be used to obtain the critical values for such tests in the low-dimension...