January 16, 2025
We prove new quantitative bounds on the additive structure of sets obeying an $L^3$ 'control' assumption, which arises naturally in several questions within additive combinatorics. This has a number of applications - in particular we improve the known bounds for the sum-product problem, the Balog-Szemer\'{e}di-Gowers theorem, and the additive growth of convex sets.
Similar papers 1
October 27, 2023
This is a survey of old and new problems and results in additive number theory.
May 15, 2022
We develop the theory of the additive dimension ${\rm dim} (A)$, i.e. the size of a maximal dissociated subset of a set $A$. It was shown that the additive dimension is closely connected with the growth of higher sumsets $nA$ of our set $A$. We apply this approach to demonstrate that for any small multiplicative subgroup $\Gamma$ the sequence $|n\Gamma|$ grows very fast. Also, we obtain a series of applications to the sum--product phenomenon and to the Balog--Wooley decomposi...
March 19, 2015
We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.
September 10, 2021
We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...
February 10, 2021
In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to also prove the three-variable expans...
October 5, 2014
In recent years some near-optimal estimates have been established for certain sum-product type estimates. This paper gives some first extremal results which provide information about when these bounds may or may not be tight. The main tool is a new result which provides a nontrivial upper bound on the multiplicative energy of a sum set or difference set.
May 21, 2017
This text contains over three hundred specific open questions on various topics in additive combinatorics, each placed in context by reviewing all relevant results. While the primary purpose is to provide an ample supply of problems for student research, it is hopefully also useful for a wider audience. It is the author's intention to keep the material current, thus all feedback and updates are greatly appreciated.
May 22, 2020
We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...
November 22, 2011
In this paper we further study the relationship between convexity and additive growth, building on the work of Schoen and Shkredov (\cite{SS}) to get some improvements to earlier results of Elekes, Nathanson and Ruzsa (\cite{ENR}). In particular, we show that for any finite set $A\subset{\mathbb{R}}$ and any strictly convex or concave function $f$, \[|A+f(A)|\gg{\frac{|A|^{24/19}}{(\log|A|)^{2/19}}}\] and \[\max\{|A-A|,\ |f(A)+f(A)|\}\gg{\frac{|A|^{14/11}}{(\log|A|)^{2/11}}}....
February 10, 2016
We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.