May 15, 2022
We develop the theory of the additive dimension ${\rm dim} (A)$, i.e. the size of a maximal dissociated subset of a set $A$. It was shown that the additive dimension is closely connected with the growth of higher sumsets $nA$ of our set $A$. We apply this approach to demonstrate that for any small multiplicative subgroup $\Gamma$ the sequence $|n\Gamma|$ grows very fast. Also, we obtain a series of applications to the sum--product phenomenon and to the Balog--Wooley decomposition--type results.
Similar papers 1
October 27, 2023
This is a survey of old and new problems and results in additive number theory.
July 18, 2014
We study the relations between several notions of dimension for an additive set, some of which are well-known and some of which are more recent, appearing for instance in work of Schoen and Shkredov. We obtain bounds for the ratios between these dimensions by improving an inequality of Lev and Yuster, and we show that these bounds are asymptotically sharp, using in particular the existence of large dissociated subsets of $\{0,1\}^n\subset \mathbb{Z}^n$.
April 8, 2014
We prove some new bounds for the size of the maximal dissociated subset of structured (having small sumset, large energy and so on) subsets A of an abelian group.
March 19, 2015
We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.
June 7, 2016
We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.
For finite sets of integers $A_1, A_2 ... A_n$ we study the cardinality of the $n$-fold sumset $A_1+... +A_n$ compared to those of $n-1$-fold sumsets $A_1+... +A_{i-1}+A_{i+1}+... A_n$. We prove a superadditivity and a submultiplicativity property for these quantities. We also examine the case when the addition of elements is restricted to an addition graph between the sets.
December 1, 2017
We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...
In the paper we study two characteristics D^+ (A), D^\times (A) of a set A which play important role in recent results concerning sum-product phenomenon. Also we obtain several variants and improvements of the Balog-Wooley decomposition theorem. In particular, we prove that any finite subset of real numbers can be split into two sets with small quantities D^+ and D^\times.
It was asked by E. Szemer\'edi if, for a finite set $A\subset\mathbb{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper, answer Szemer\'edi's question in the affirmative by showing that this maximum is of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\epsilon}$ for some $\epsilon>0$. In fact, this...
April 15, 2022
In this paper we start to investigate a new body of questions in additive combinatorics. The fundamental Cauchy--Davenport theorem gives a lower bound on the size of a sumset A+B for subsets of the cyclic group Zp of order p (p prime), and this is just one example of a large family of results. Our aim in this paper is to investigate what happens if we restrict the number of elements of one set that we may use to form the sums. Here is the question we set out to answer: given ...