January 22, 2025
Similar papers 3
April 16, 2022
These notes are an exposition of Galois Theory from the original Lagrangian and Galoisian point of view. A particular effort was made here to better understand the connection between Lagrange's purely combinatorial approach and Galois algebraic extensions of the latter. Moreover, stimulated by the necessities of present day computer explorations, the algorithmic approach has been given priority here over every other aspect of presentation. In particular, you may not find here...
December 2, 2019
Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models...
August 22, 2011
Galois theory is developed using elementary polynomial and group algebra. The method follows closely the original prescription of Galois, and has the benefit of making the theory accessible to a wide audience. The theory is illustrated by a solution in radicals of lower degree polynomials, and the standard result of the insolubility in radicals of the general quintic and above. This is augmented by the presentation of a general solution in radicals for all polynomials when su...
September 8, 2022
The symbolic AI community is increasingly trying to embrace machine learning in neuro-symbolic architectures, yet is still struggling due to cultural barriers. To break the barrier, this rather opinionated personal memo attempts to explain and rectify the conventions in Statistics, Machine Learning, and Deep Learning from the viewpoint of outsiders. It provides a step-by-step protocol for designing a machine learning system that satisfies a minimum theoretical guarantee neces...
December 4, 2023
Optimizing and certifying the positivity of polynomials are fundamental primitives across mathematics and engineering applications, from dynamical systems to operations research. However, solving these problems in practice requires large semidefinite programs, with poor scaling in dimension and degree. In this work, we demonstrate for the first time that neural networks can effectively solve such problems in a data-driven fashion, achieving tenfold speedups while retaining hi...
October 10, 2024
Quantum entanglement, a cornerstone of quantum mechanics, remains challenging to classify, particularly in multipartite systems. Here, we present a new interpretation of entanglement classification by revealing a profound connection to Galois groups, the algebraic structures governing polynomial symmetries. This approach not only uncovers hidden geometric relationships between entangled quantum states and polynomial roots but also introduces a method for quantifying entanglem...
October 29, 2024
Integrating symbolic techniques with statistical ones is a long-standing problem in artificial intelligence. The motivation is that the strengths of either area match the weaknesses of the other, and $\unicode{x2013}$ by combining the two $\unicode{x2013}$ the weaknesses of either method can be limited. Neuro-symbolic AI focuses on this integration where the statistical methods are in particular neural networks. In recent years, there has been significant progress in this res...
January 30, 2013
We describe the Fundamental Theorem on Symmetric Polynomials (FTSP), exposit a classical proof, and offer a novel proof that arose out of an informal course on group theory. The paper develops this proof in tandem with the pedagogical context that led to it. We also discuss the role of the FTSP both as a lemma in the original historical development of Galois theory and as an early example of the connection between symmetry and expressibility that is described by the theory.
February 29, 2020
Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as sugges...
July 25, 2023
We introduce a machine-learning approach (denoted Symmetry Seeker Neural Network) capable of automatically discovering discrete symmetry groups in physical systems. This method identifies the finite set of parameter transformations that preserve the system's physical properties. Remarkably, the method accomplishes this without prior knowledge of the system's symmetry or the mathematical relationships between parameters and properties. Demonstrating its versatility, we showcas...