January 22, 2025
Similar papers 4
September 11, 2023
We consider the problem of discovering subgroup $H$ of permutation group $S_{n}$. Unlike the traditional $H$-invariant networks wherein $H$ is assumed to be known, we present a method to discover the underlying subgroup, given that it satisfies certain conditions. Our results show that one could discover any subgroup of type $S_{k} (k \leq n)$ by learning an $S_{n}$-invariant function and a linear transformation. We also prove similar results for cyclic and dihedral subgroups...
January 26, 2025
This paper compares Julia reduction and hyperbolic reduction with the aim of finding equivalent binary forms with minimal coefficients. We demonstrate that hyperbolic reduction generally outperforms Julia reduction, particularly in the cases of sextics and decimics, though neither method guarantees achieving the minimal form. We further propose an additional shift and scaling to approximate the minimal form more closely. Finally, we introduce a machine learning framework to i...
December 21, 2021
Interpretability of neural networks and their underlying theoretical behavior remain an open field of study even after the great success of their practical applications, particularly with the emergence of deep learning. In this work, NN2Poly is proposed: a theoretical approach to obtain an explicit polynomial model that provides an accurate representation of an already trained fully-connected feed-forward artificial neural network (a multilayer perceptron or MLP). This approa...
January 2, 2025
Many numerical algorithms in scientific computing -- particularly in areas like numerical linear algebra, PDE simulation, and inverse problems -- produce outputs that can be represented by semialgebraic functions; that is, the graph of the computed function can be described by finitely many polynomial equalities and inequalities. In this work, we introduce Semialgebraic Neural Networks (SANNs), a neural network architecture capable of representing any bounded semialgebraic fu...
March 13, 2022
Along with the proliferation of digital data collected using sensor technologies and a boost of computing power, Deep Learning (DL) based approaches have drawn enormous attention in the past decade due to their impressive performance in extracting complex relations from raw data and representing valuable information. Meanwhile, though, rooted in its notorious black-box nature, the appreciation of DL has been highly debated due to the lack of interpretability. On the one hand,...
July 23, 2020
In this work, we show that neural networks can be represented via the mathematical theory of quiver representations. More specifically, we prove that a neural network is a quiver representation with activation functions, a mathematical object that we represent using a network quiver. Also, we show that network quivers gently adapt to common neural network concepts such as fully-connected layers, convolution operations, residual connections, batch normalization, pooling operat...
October 10, 2024
A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups. We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure and producing a more complete description of such models in a step towards unifying the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024)....
September 22, 2020
The purpose of this article is to review the achievements made in the last few years towards the understanding of the reasons behind the success and subtleties of neural network-based machine learning. In the tradition of good old applied mathematics, we will not only give attention to rigorous mathematical results, but also the insight we have gained from careful numerical experiments as well as the analysis of simplified models. Along the way, we also list the open problems...
July 11, 2017
We introduce the Deep Symbolic Network (DSN) model, which aims at becoming the white-box version of Deep Neural Networks (DNN). The DSN model provides a simple, universal yet powerful structure, similar to DNN, to represent any knowledge of the world, which is transparent to humans. The conjecture behind the DSN model is that any type of real world objects sharing enough common features are mapped into human brains as a symbol. Those symbols are connected by links, representi...
January 15, 2021
We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more eff...