July 2, 2003
Similar papers 4
August 20, 2014
During some thirty years, 1980-2010, technical studies of optical interferometry from instruments in space were pursued as promising for higher spatial resolution and for higher astrometric accuracy. Nulling interferometry was studied for both high spatial resolution and high contrast. These studies were great dreams deserving further historical attention. ESA's interest in interferometry began in the early 1980s. The studies of optical interferometry for the global astrometr...
October 13, 1999
The current status of the high spatial resolution imaging interferometry in optical astronomy is reviewed in the light of theoretical explanation, as well as of experimental constraints that exist in the present day technology. The basic mathematical interlude pertinent to the interferometric technique and its applications in astronomical observations are presented in detail. An elaborate account of the random refractive index fluctuations of the atmosphere producing random a...
August 8, 2024
NASA's return to the Moon presents unparalleled opportunities to advance high-impact scientific capabilities. At the cutting edge of these possibilities are extremely high-resolution interferometric observations at visible and ultraviolet wavelengths. Such technology can resolve the surfaces of stars, explore the inner accretion disks of nascent stars and black holes, and eventually enable us to observe surface features and weather patterns on nearby exoplanets. We have been ...
March 7, 2017
High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Galaxy most of the stellar photosphere remains smaller than 1 mas. With the success of long baseline interferometry these limitations were soom overcome. Today low and high resolution interferometric instruments on the VLTI and CHAR...
June 26, 2009
While it is well known that most massive stars are found to be part of binary or multiple systems, an accurate characterization of the statistical properties of these multiple objects is still lacking. In the present talk, we will review the current status of the field, emphasizing the need of using complementarity techniques to cover the large parameter space. We will also describe what we think is the place of interferometry in this context.
October 23, 2014
Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pione...
December 21, 2020
The CHARA Array is the longest baseline optical interferometer in the world. Operated with natural seeing, it has delivered landmark sub-milliarcsecond results in the areas of stellar imaging, binaries, and stellar diameters. However, to achieve ambitious observations of faint targets such as young stellar objects and active galactic nuclei, higher sensitivity is required. For that purpose, adaptive optics are developed to correct atmospheric turbulence and non-common path ab...
July 22, 2019
The ultimate astronomical observatory would be a formation flying interferometer in space, immune to atmospheric turbulence and absorption, free from atmospheric and telescope thermal emission, and reconfigurable to adjust baselines according to the required angular resolution. Imagine the near/mid-infrared sensitivity of the JWST and the far-IR sensitivity of Herschel but with ALMA-level angular resolution, or imagine having the precision control to null host star light acro...
November 3, 2009
The combination of high spatial and spectral resolution in optical astronomy enables new observational approaches to many open problems in stellar and circumstellar astrophysics. However, constructing a high-resolution spectrograph for an interferometer is a costly and time-intensive undertaking. Our aim is to show that, by coupling existing high-resolution spectrographs to existing interferometers, one could observe in the domain of high spectral and spatial resolution, and ...
January 14, 2008
The understanding and modeling of the structure and evolution of stars is based on statistical physics as well as on hydrodynamics. Today, a precise identification and proper description of the physical processes at work in stellar interiors are still lacking (one key point being that of transport processes) while the comparison of real stars to model predictions, which implies conversions from the theoretical space to the observational one, suffers from uncertainties in mode...