May 16, 2023
We discuss the prospect of identifying a white dwarf binary merger by monitoring disappearance of its nearly monochromatic gravitational wave. For a ten-year operation of the laser interferometer space antenna (LISA), the chance probability of observing such an event is roughly estimated to be 20%. By simply using short-term coherent signal integrations, we might determine the merger time with an accuracy of $\sim $3-10 days. Also considering its expected sky localizability $...
August 18, 2021
We report the discovery of the brightest detached binary white dwarfs with periods less than an hour, which provide two new gravitational wave verification binaries for the Laser Interferometer Space Antenna (LISA). The first one, SMSS J033816.16$-$813929.9 (hereafter J0338), is a 30.6 min orbital period, $g=17.2$ mag detached double white dwarf binary with a Gaia parallax measurement that places it at a distance of 533 pc. The observed radial velocity and photometric variabi...
October 10, 2014
The evolving Laser Interferometer Space Antenna (eLISA) will revolutionize our understanding of the formation and evolution of massive black holes along cosmic history by probing massive black hole binaries in the $10^3-10^7$ solar mass range out to redshift $z\gtrsim 10$. High signal-to-noise ratio detections of $\sim 10-100$ binary coalescences per year will allow accurate measurements of the parameters of individual binaries (such as their masses, spins and luminosity dist...
February 1, 2013
I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I ve...
March 11, 2019
Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of low frequency gravitational wave radiation, which makes them ideal calibrators for the gravitational low-frequency wave detector LISA mission. However, current theoretical evolution models still fail to explain the observed proper...
June 24, 2024
Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred...
February 24, 2020
Milky Way dwarf satellites are unique objects that encode the early structure formation and therefore represent a window into the high redshift Universe. So far, their study was conducted using electromagnetic waves only. The future Laser Interferometer Space Antenna (LISA) has the potential to reveal Milky Way satellites in gravitational waves emitted by double white dwarf (DWD) binaries. We investigate gravitational wave (GW) signals detectable by LISA as a possible tool fo...
June 30, 2011
The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribu...
July 15, 2019
The first terrestrial gravitational wave interferometers have dramatically underscored the scientific value of observing the Universe through an entirely different window, and of folding this new channel of information with traditional astronomical data for a multimessenger view. The Laser Interferometer Space Antenna (LISA) will broaden the reach of gravitational wave astronomy by conducting the first survey of the millihertz gravitational wave sky, detecting tens of thousan...
October 9, 2018
The upcoming LISA mission is the only experiment that will allow us to study the Milky Way's structure using gravitational wave signals from Galactic double white dwarfs (DWDs). The total number of expected detections exceeds $10^5$. Furthermore, up to a hundred DWDs can be simultaneously detected in both gravitational and optical radiation (e.g. with Gaia and LSST as eclipsing), making DWDs ideal sources for performing a multi-messenger tomography of the Galaxy. We show that...