August 13, 2003
Gravitational radiation from the galactic population of white dwarf binaries is expected to produce a background signal in the LISA frequency band. At frequencies below 1 mHz, this signal is expected to be confusion-limited and has been approximated as gaussian noise. At frequencies above about 5 mHz, the signal will consist of separable individual sources. We have produced a simulation of the LISA data stream from a population of 90k galactic binaries in the frequency range ...
June 8, 2018
The upcoming LISA mission offers the unique opportunity to study the Milky Way through gravitational wave radiation from Galactic binaries. Among the variety of Galactic gravitational wave sources, LISA is expected to individually resolve signals from $\sim 10^5$ ultra-compact double white dwarf (DWD) binaries. DWDs detected by LISA will be distributed across the Galaxy, including regions that are hardly accessible to electromagnetic observations such as the inner part of the...
August 3, 2021
Recently, Tamanini & Danielski (2019) discussed the possibility to detect circumbinary exoplanets (CBPs) orbiting double white dwarfs (DWDs) with the Laser Interferometer Space Antenna (LISA). Extending their methods and criteria, we discuss the prospects for detecting exoplanets around DWDs not only by LISA, but also by Taiji, a Chinese space-borne gravitational-wave (GW) mission which has a slightly better sensitivity at low frequencies. We first explore how different binar...
October 10, 2024
Upcoming space-based gravitational-wave detectors will be sensitive to millions and resolve tens of thousands of stellar-mass binary systems at mHz frequencies. The vast majority of these will be double white dwarfs in our Galaxy. The greatest part will remain unresolved, forming an incoherent stochastic foreground signal. Using state-of-the-art Galactic models for the formation and evolution of binary white dwarfs and accurate LISA simulated signals, we introduce a test for ...
February 24, 2020
The population of Milky Way satellite galaxies is of great interest for cosmology, fundamental physics, and astrophysics. They represent the faint end of the galaxy luminosity function, are the most dark-matter dominated objects in the local Universe, and contain the oldest and most metal-poor stellar populations. Recent surveys have revealed around 60 satellites, but this could represent less than half of the total. Characterization of these systems remains a challenge due t...
May 24, 2021
I review the scientific potential of the Laser Interferometer Space Antenna (LISA), a space-borne gravitational wave (GW) observatory to be launched in the early 30s'. Thanks to its sensitivity in the milli-Hz frequency range, LISA will reveal a variety of GW sources across the Universe, from our Solar neighbourhood potentially all the way back to the Big Bang, promising to be a game changer in our understanding of astrophysics, cosmology and fundamental physics. This review ...
February 24, 2023
Galactic compact binaries with orbital periods shorter than a few hours emit detectable gravitational waves at low frequencies. Their gravitational wave signals can be detected with the future Laser Interferometer Space Antenna (LISA). Crucially, they may be useful in the early months of the mission operation in helping to validate LISA's performance in comparison to pre-launch expectations. We present an updated list of 55 candidate LISA binaries with measured properties, fo...
June 10, 2004
The Laser Interferometer Space Antenna (LISA) is expected to provide the largest observational sample of binary systems of faint sub-solar mass compact objects, in particular white-dwarfs, whose radiation is monochromatic over most of the LISA observational window. Current astrophysical estimates suggest that the instrument will be able to resolve about 10000 such systems, with a large fraction of them at frequencies above 3 mHz, where the wavelength of gravitational waves be...
March 17, 1999
Double white dwarfs could be important sources for space based gravitational wave detectors like OMEGA and LISA. We use population synthesis to predict the current population of double white dwarfs in the Galaxy and the gravitational waves produced by this population. We simulate a detailed power spectrum for an observation with an integration time of 10^6 s. At frequencies below ~3 mHz confusion limited noise dominates. At higher frequencies a few thousand double white dwarf...
May 29, 2007
We consider the formation of double white dwarfs (DWDs) through dynamical interactions in globular clusters. Such interactions can give rise to eccentric DWDs, in contrast to the exclusively circular population expected to form in the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna (LISA) mission and distances as far as the Large Magellanic Cloud, multiple harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher than 8 for at...