June 3, 1998
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power law form for spectra of temporal fluctuations. Such non-local connections are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality A recently developed cell dynamical system model for atmospheric flows predicts the observed self-organized criticality as intrinsic to quantumlike mechanics governing flow dynamics. The model predicts the following: (a) The flow structure consists of an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. (b) The universal algorithm for self-organized criticality is expressed in terms of the universal Feigenbaum's constants. (c) The Feigenbaum's constants are expressed as functions of the golden mean. (d) The quantum mechanical constants ' fine structure constant' and 'ratio of proton mass to electron mass' which are pure numbers and obtained by experimental observations only, are now derived in terms of the Feigenbaum's constant a. (e) Atmospheric flow structure follows Kepler's third law of planetary motion. Therefore Newton's inverse square law for gravitation applies to eddy masses also. The centripetal acceleration representing inertial masses (of eddies) are equivalent to gravitational masses. Fractal structure to the space-time continuum can be visualized as a nested continuum of vortex (eddy) circulations whose inertial masses obey Newton's inverse square law of gravitation. The model concepts are equivalent to a superstring model for subatomic dynamics which incorporates gravitational forces.
Similar papers 1
October 9, 1997
Atmospheric flows exhibit selfsimilar fluctuations on all scales(space-time) ranging from climate(kilometers/years) to turbulence(millimeters/seconds) manifested as fractal geometry to the global cloud cover pattern concomitant with inverse power law form for power spectra of temporal fluctuations. Selfsimilar fluctuations implying long-range correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality in atmospheri...
October 22, 1997
The author has identified quantumlike mechanics in atmospheric flows with intrinsic nonlocal space-time connections manifested as the selfsimilar fractal geometry to the global cloud cover pattern concomitant with inverse power law form for power spectra of temporal fluctuations. Such long-range spatiotemporal correlations are generic to dynamical systems in nature and are recently identified as signatures of selforganized criticality, a field of study belonging to the newly ...
August 17, 2009
Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover pattern and inverse power law form for power spectra of meteorological parameters such as windspeed, temperature, rainfall etc. Inverse power law form for power spectra indicate long-range spacetime correlations or non-local connections and is a signature of selforganised criticality generic to dynamical systems in nature such as river flows, populatio...
July 21, 2006
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard m...
October 19, 2000
The complex spaciotemporal patterns of atmospheric flows that result from the cooperative existence of fluctuations ranging in size from millimetres to thousands of kilometres are found to exhibit long-range spacial and temporal correlations. These correlations are manifested as the self-similar fractal geometry of the global cloud cover pattern and the inverse power-law form for the atmospheric eddy energy spectrum. Such long-range spaciotemporal correlations are ubiquitous ...
March 3, 2005
Non-local connections, i. e. long-range space-time correlations intrinsic to the observed subatomic dynamics of quantum systems is also exhibited by macro-scale dynamical systems as selfsimilar fractal space-time fluctuations and is identified as self-organized criticality. The author has developed a general systems theory for the observed self-organized criticality applicable to dynamical systems of all space-time scales based on the concept that spatial integration of enclo...
May 28, 1998
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power law form for power spectra of temporal fluctuations on all space-time scales ranging from turbulence(centimeters-seconds) to climate(kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard model...
May 31, 2001
The apparantly irregular (unpredictable) space-time fluctuations in atmospheric flows ranging from climate (thousands of kilometers - years) to turbulence (millimeters - seconds) exhibit the universal symmetry of self-similarity. Self-similarity or scale invariance implies long-range spatiotemporal correlations and is manifested in atmospheric flows as the fractal geometry to spatial pattern concomitant with inverse power-law form for power spectra of temporal fluctuations. L...
August 26, 2003
The complex spatiotemporal patterns of atmospheric flows resulting from the cooperative existence of fluctuations ranging in size from millimeters to thousands of kilometers are found to exhibit long-range spatial and temporal correlations manifested as the selfsimilar fractal geometry to the global cloud cover pattern and the inverse power law form for the atmospheric eddy energy spectrum. Such long-range spatial and temporal correlations are ubiquitous to extended natural d...
June 25, 1998
Atmospheric flows exhibit fluctuations of all scales (space -time) ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). The apparently random fluctuations however exhibit long-range spatio-temporal correlations manifested as the selfsimilar fractal geometry to the global cloud cover pattern concomitant with inverse power law form for power spectra of temporal fluctuations . Long-range spatiotemporal correlations are ubiquitous to dynamical...