June 3, 1998
Similar papers 2
April 19, 2001
Turbulence, namely, irregular fluctuations in space and time characterize fluid flows in general and atmospheric flows in particular.The irregular,i.e., nonlinear space-time fluctuations on all scales contribute to the unpredictable nature of both short-term weather and long-term climate.It is of importance to quantify the total pattern of fluctuations for predictability studies. The power spectra of temporal fluctuations are broadband and exhibit inverse power law form with ...
October 9, 1998
Atmospheric flows exhibit cantorian fractal space-time fluctuations signifying long-range spatiotemporal correlations. A recently developed cell dynamical system model shows that such non-local connections are intrinsic to quantum-like chaos governing flow dynamics. The dynamical evolution of fractal structures can be quantified in terms of ordered energy flow described by mathematical functions which occur in the field of number theory. The quantum-like chaos in atmospheric ...
June 23, 2010
Atmospheric flows, an example of turbulent fluid flows, exhibit fractal fluctuations of all space-time scales ranging from turbulence scale of mm -sec to climate scales of thousands of kilometers - years and may be visualized as a nested continuum of weather cycles or periodicities, the smaller cycles existing as intrinsic fine structure of the larger cycles. The power spectra of fractal fluctuations exhibit inverse power law form signifying long - range correlations identifi...
August 13, 1998
Cantorian fractal spacetime fluctuations characterize quantumlike chaos in atmospheric flows. The macroscale atmospheric flow structure behaves as a unified whole quantum system, where, the superimposition of a continuum of eddies results in the observed global weather patterns with long-range spatiotemporal correlations such as that of the widely investigated El Nino phenomenon. Large eddies are visualised as envelopes enclosing smaller eddies, thereby generating a hierarchy...
August 19, 2004
Dynamical systems in nature such as fluid flows, heart beat patterns, rainfall variability, stock market price fluctuations, etc. exhibit selfsimilar fractal fluctuations on all scales in space and time. Power spectral analyses of fractal fluctuations exhibit inverse power law form indicating long-range space-time correlations, identified as self-organized criticality. The author has proposed a general systems theory, which predicts the observed self-organized criticality as ...
September 2, 1998
The neural networks of the human brain act as very efficient parallel processing computers co-ordinating memory related responses to a multitude of input signals from sensory organs. Information storage, update and appropriate retrieval are controlled at the molecular level by the neuronal cytoskeleton which serves as the internal communication network within neurons. Information flow in the highly ordered parallel networks of the filamentous protein polymers which make up th...
May 8, 2010
Atmospheric flows exhibit self-similar fractal space-time fluctuations on all space-time scales in association with inverse power law distribution for power spectra of meteorological parameters such as wind, temperature, etc., and thus implies long-range correlations, identified as self-organized criticality generic to dynamical systems in nature. A general systems theory based on classical statistical physical concepts developed by the author visualizes the fractal fluctuati...
September 27, 2000
Recently a stochastic underpinning for space time has been considered, what may be called Quantized Fractal Space Time. This leads us to a number of very interesting consequences which are testable, and also provides a rationale for several otherwise inexplicable features in Particle Physics and Cosmology. These matters are investigated in the present paper.
February 11, 2001
The spacing intervals of adjacent Riemann zeta zeros(non-trivial) exhibit fractal(irregular) fluctuations generic to dynamical systems in nature such as fluid flows, heart beat patterns, stock market price index, etc., and are associated with unpredictability or chaos. The power spectra of such fractal space-time fluctuations exhibit universal inverse power law form and signify long-range correlations, identified as self-organized criticality . A cell dynamical system model d...
August 4, 2000
A cell dynamical system model for deterministic chaos enables precise quantification of the round-off error growth,i.e., deterministic chaos in digital computer realizations of mathematical models of continuum dynamical systems. The model predicts the following: (a) The phase space trajectory (strange attractor) when resolved as a function of the computer accuracy has intrinsic logarithmic spiral curvature with the quasiperiodic Penrose tiling pattern for the internal structu...