January 2, 2018
Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation n...
August 12, 2013
We study the variation of the dielectric response of ionic aqueous solutions as function of their ionic strength. The effect of salt on the dielectric constant appears through the coupling between ions and dipolar water molecules. On a mean-field level, we account for any internal charge distribution of particles. The dipolar degrees of freedom are added to the ionic ones and result in a generalization of the Poisson-Boltzmann (PB) equation called the Dipolar PB (DPB). By loo...
April 26, 2022
The structure of aqueous CsCl solutions was investigated by classical molecular dynamics simulations (MD) at three salt concentrations (1.5, 7.5, and 15 mol %). Thirty interatomic potential sets, based on the 12-6 Lennard-Jones model, parametrized for non-polarizable water solvent molecules were collected and tested. Some basic properties, such as density, static dielectric constant, and self-diffusion coefficients, predicted by the force fields (FF), were compared with avail...
October 10, 2024
This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. ...
February 12, 2016
Although aqueous electrolytes are among the most important solutions, the molecular simulation of their intertwined properties of chemical potentials, solubility and activity coefficients has remained a challenging problem, and has attracted considerable recent interest. In this perspectives review, we focus on the simplest case of aqueous sodium chloride at ambient conditions and discuss the two main factors that have impeded progress. The first is lack of consensus with res...
July 25, 2011
Two of the most challenging tasks in molecular simulation consist in capturing the properties of systems with long-range interactions (e.g. electrolyte solutions) as well as systems containing large molecules such as hydrogels. For the development and optimization of molecular force fields and models, a large number of simulation runs have to be evaluated to obtain the sensitivity of the target properties with respect to the model parameters. The present work discusses force ...
May 1, 2020
Can we avoid molecular dynamics simulations to estimate the electrostatic interaction between charged objects separated by a nanometric distance in water? To answer this question, we develop a continuous model for the dielectric properties of water based on a functional of the polarization. A phenomenological Landau-Ginzburg Hamiltonian for the electrostatic energy of water is parameterized to capture the dipolar correlations in the fluid at the nanometric scale. We show that...
September 15, 2014
We investigate the individual activity coefficients of pure 1:1 and 2:1 electrolytes using our theory that is based on the competition of ion-ion (II) and ion-water (IW) interactions (Vincze et al., J. Chem. Phys. 133, 154507, 2010). The II term is computed from Grand Canonical Monte Carlo simulations on the basis of the implicit solvent model of electrolytes using hard sphere ions with Pauling radii. The IW term is computed on the basis of Born's treatment of solvation using...
October 30, 2003
K+(aq) ion is an integral component of many cellular processes, amongst which the most important, perhaps, is its role in transmitting electrical impulses along the nerve. Understanding its hydration structure and thermodynamics is crucial in dissecting its role in such processes. Her we address these questions using both the statistical mechanical quasi-chemical theory of solutions and ab initio molecular dynamics simulations. Simulations predict an interesting hydration str...
January 29, 2012
We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods we expand the Gibbs free-energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized b...