June 25, 2012
Cavitation and bubble dynamics are central concepts in engineering, the natural sciences, and the mathematics of fluid mechanics. Due to the nonlinear nature of their dynamics, the governing equations are not fully solvable. Here, the dynamics of a spherical bubble in an N-dimensional fluid are discussed in the hope that examining bubble behavior in N dimensions will add insight to their behavior in three dimensions. Several canonical results in bubble dynamics are re-derived...
September 9, 2024
The non-linear dynamics of driven oscillations in the size of a spherical bubble are mapped to the dynamics of a Newtonian particle in a potential within the incompressible liquid regime. The compressible liquid regime, which is important during the bubble's sonic collapse, is approached adiabatically. This new framework naturally distinguishes between the two time scales involved in the non-linear oscillations of a bubble. It also explains the experimentally observed sharp r...
January 18, 2024
The familiar process of bubbles generated via breaking waves in the ocean is foundational to many natural and industrial applications. In this process, large pockets of entrained gas are successively fragmented by the ambient turbulence into smaller and smaller bubbles. The key question is how long it takes for the bubbles to reach terminal sizes for a given system. Despite decades of effort, the reported breakup time from multiple experiments differs significantly. Here, to ...
September 28, 2011
Cavitation bubbles collapsing and rebounding in a pressure gradient grad(p) form a "micro-jet" enveloped by a "vapor jet". This letter presents unprecedented observations of the vapor jets formed in a uniform gravity-induced grad(p), modulated aboard parabolic flights. The data uncovers that the normalized jet volume is independent of the liquid density and viscosity and proportional to zeta=grad(p)*R0/p, where R0 is the maximal bubble radius and p is the driving pressure. A ...
October 11, 2013
We propose here a fluid dynamics video relating the bursting of soap rigid films.
May 19, 2016
As a bubble bursts at a liquid-air interface, a tiny liquid jet rises and can release the so-called \textit{jet drops}. In this paper, the size of the top jet drop produced by a bubble bursting is investigated experimentally. We determine, and discuss, the first scaling law enabling the determination of the top jet drop size as a function of the corresponding mother bubble radius and the liquid properties (viscosity, surface tension, density), along with its regime of existen...
March 7, 2023
The analysis of numerical simulations describing the collapse of capillary cavities reveals that the jets originated from the bursting of bubbles are driven by the condition that the dimensionless liquid flow rate per unit length directed towards the axis of symmetry, $q_\infty$, remains nearly constant in time. This observation, which is justified in physical terms because liquid inertia prevents appreciable changes in $q_\infty$ during the short time scale characterizing th...
January 13, 2017
In this paper, we investigate how the drainage and rupture of surfactant-stabilised bubbles floating at the surface of a liquid pool depend on the concentration of surface-active molecules in water. Drainage measurements at the apex of bubbles indicate that the flow profile is increasingly plug-like as the surfactant concentration is decreased from several times the critical micellar concentration (cmc) to just below the cmc. High-speed observations of bubble bursting reveal ...
March 29, 2023
Cavitation is a phenomenon in which bubbles form and collapse in liquids due to pressure or temperature changes. Even common tools like a rubber popper can be used to create cavitation at home. As a rubber popper toy slams a solid wall underwater, toroidal cavitation forms. As part of this project, we aim to explain how an elastic shell causes cavitation and to describe the bubble morphology. High-speed imaging reveals that a fast fluid flow between a snapping popper and a so...
April 28, 2024
Numerical methods for the simulation of cavitation processes have been developed for more than 50 years. The rich variety of physical phenomena triggered by the collapse of a bubble has several applications in medicine and environmental science but requires the development of sophisticated numerical methods able to capture the presence of sharp interfaces between fluids and solid/elastic materials, the generation of shock waves and the development of non-spherical modes. One ...