September 1, 2000
Similar papers 5
November 21, 2002
We determine the magnetic phase diagram of the antiferromagnetic(AF) zigzag spin chain in the strongly frustrated region, using the density matrix renormalization group method. We find the magnetization plateau at 1/3 of the full moment accompanying the spontaneous symmetry breaking of the translation, the cusp singularities above and/or below the plateau, and the even-odd effect in the magnetization curve. We also discuss the formation mechanisms of the plateau and cusps bri...
August 20, 2009
We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Here we determine and solve the basic CCM equations by using the localised approximation scheme commonly referred to as the `LSUB$m$' approximation scheme and we carry out high-order calculations by using intensive computational methods...
January 16, 2004
The magnetization process of an S=1/2 antiferromagnet on the kagome lattice, [Cu_3(titmb)_2(OCOCH_3)_6]H_2O {titmb= 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6 trimethylbenzene} has been measured at very low temperatures in both pulsed and steady fields. We have found a new dynamical behavior in the magnetization process: a plateau at one third of the saturation magnetization appears in the pulsed field experiments for intermediate sweep rates of the magnetic field and disappears i...
February 4, 2015
To clarify the instability of the ferrimagnetism which is the fundamental magnetism of ferrite, numerical-diagonalization study is carried out for the two-dimensional S=1/2 Heisenberg antiferromagnet with frustration. We find that the ferrimagnetic ground state has the spontaneous magnetization in small frustration; due to a frustrating interaction above a specific strength, the spontaneous magnetization discontinuously vanishes so that the ferrimagnetic state appears only un...
January 22, 2009
These lecture notes are intended to provide a simple overview of the physics of geometrically frustrated magnets. The emphasis is on classical and semiclassical treatments of the statistical mechanics and dynamics of frustrated Heisenberg models, and on the ways in which the results provide an understanding of some of the main observed properties of these systems.
January 14, 2005
We present detailed calculations of the magnetic ground state properties of Cs$_2$CuCl$_4$ in an applied magnetic field, and compare our results with recent experiments. The material is described by a spin Hamiltonian, determined with precision in high field measurements, in which the main interaction is antiferromagnetic Heisenberg exchange between neighboring spins on an anisotropic triangular lattice. An additional, weak Dzyaloshinkii-Moriya interaction introduces easy-pla...
March 25, 2009
Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in magnetic field, together with complementary spin wave analysis. Striking results include (i) a massively enhanced magnetocaloric effect in antiferromagnets bordering on ferromagnetic order, (ii) a route to an $m=1/3$ magnetizatio...
June 17, 2021
We study the $S=1/2$ pyrochlore Heisenberg antiferromagnet in a magnetic field. Using large scale density-matrix renormalization group (DMRG) calculations for clusters up to $128$ spins, we find indications for a finite triplet gap, causing a threshold field to nonzero magnetization in the magnetization curve. We obtain a robust saturation field consistent with a magnon crystal, although the corresponding $5/6$ magnetization plateau is very slim and possibly unstable. Most re...
September 21, 2009
We present numerical exact results for the ground state and the low-lying excitations for the spin-1/2 J1-J2 Heisenberg antiferromagnet on finite square lattices of up to N=40 sites. Using finite-size extrapolation we determine the ground-state energy, the magnetic order parameters, the spin gap, the uniform susceptibility, as well as the spin-wave velocity and the spin stiffness as functions of the frustration parameter J2/J1. In agreement with the generally excepted scenari...
February 8, 2023
Motivated by the recent synthesis of a number of Mott insulating square-kagome materials, we explore the rich phenomenology of frustrated magnetism induced by this lattice geometry, also referred to as the squagome or shuriken lattice. On the classical level, square-kagome antiferromagnets are found to exhibit extensive degeneracies, order-by-disorder, and non-coplanar ordering tendencies, which we discuss for an elementary, classical Heisenberg model with nearest-neighbor an...