July 27, 2001
Similar papers 4
April 10, 2007
Many features of granular media can be modelled as a fluid of hard spheres with {\em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental basis for the derivation of the hydrodynamic equations and explicit expressions for the transport coefficients appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary co...
July 25, 2007
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant diffe...
October 25, 2017
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, $N_c$, and their radius of gyration, $R_G$. We show that $N_c\propto R_G^{d_f}$, providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, ...
March 27, 2018
Granular matter under rapid flow conditions can be modeled as a granular gas, namely, a gas of hard spheres dissipating part of their kinetic energy during binary collisions (inelastic hard spheres, IHS). On the other hand, given that collisions are inelastic one has to inject energy into the system to compensate for the inelastic cooling and maintain it in rapid conditions. Although in real experiments the external energy is supplied to the system by the boundaries, it is qu...
February 4, 2010
We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent ...
April 9, 1999
Under many conditions, macroscopic grains flow like a fluid; kinetic theory pred icts continuum equations of motion for this granular fluid. In order to test the theory, we perform event driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that continuum theory describes the system well. With a bath that heats the gas homogeneously...
November 15, 2006
We study the effect of pre-collisional velocity correlations on granular shear flow by molecular dynamics simulations of the inelastic hard sphere system. Comparison of the simulations with the kinetic theory reveals that the theory overestimates both the energy dissipation rate and the normal stress in the dense flow region. We find that the relative normal velocity of colliding particles is smaller than that expected from random collisions, and the discrepancies in the diss...
August 27, 2015
We study here the steady state attained in a granular gas of inelastic rough spheres that is subject to a spatially uniform random volume force. The stochastic force has the form of the so-called white noise and acts by adding impulse to the particle translational velocities. We work out an analytical solution of the corresponding velocity distribution function from a Sonine polynomial expansion that displays energy non-equipartition between the translational and rotational m...
January 17, 2015
We study analytically and by event-driven molecular dynamics simulations the nonergodic and aging properties of force-free cooling granular gases with both constant and velocity-dependent (viscoelastic) restitution coefficient $\varepsilon$ for particle pair collisions. We compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behavi...
June 24, 2002
We present a numerical simulation of a granular material using hydrodynamic equations. We show that, in the absence of external forces, such a system phase-separates into high density and low density regions. We show that this separation is dependent on the inelasticity of collisions, and comment on the mechanism for this clustering behavior. Our results are compatible with the granular clustering seen in experiments and molecular dynamic simulations of inelastic hard disks.