November 9, 2001
Similar papers 2
May 10, 2023
The $\textit{von Neumann Computer Architecture}$ has a distinction between computation and memory. In contrast, the brain has an integrated architecture where computation and memory are indistinguishable. Motivated by the architecture of the brain, we propose a model of $\textit{associative computation}$ where memory is defined by a set of vectors in $\mathbb{R}^n$ (that we call $\textit{anchors}$), computation is performed by convergence from an input vector to a nearest nei...
April 19, 2020
We study the space of functions computed by random-layered machines, including deep neural networks and Boolean circuits. Investigating the distribution of Boolean functions computed on the recurrent and layer-dependent architectures, we find that it is the same in both models. Depending on the initial conditions and computing elements used, we characterize the space of functions computed at the large depth limit and show that the macroscopic entropy of Boolean functions is e...
June 25, 2013
It has been shown \citep{broeck90:physicalreview,patarnello87:europhys} that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolutio...
September 8, 2010
In this chapter, a statistical measure of complexity is introduced and some of its properties are discussed. Also, some straightforward applications are shown.
January 23, 2024
Recent works demonstrated the existence of a double-descent phenomenon for the generalization error of neural networks, where highly overparameterized models escape overfitting and achieve good test performance, at odds with the standard bias-variance trade-off described by statistical learning theory. In the present work, we explore a link between this phenomenon and the increase of complexity and sensitivity of the function represented by neural networks. In particular, we ...
March 5, 2024
Existing research often posits spurious features as "easier" to learn than core features in neural network optimization, but the impact of their relative simplicity remains under-explored. Moreover they mainly focus on the end performance intead of the learning dynamics of feature learning. In this paper, we propose a theoretical framework and associated synthetic dataset grounded in boolean function analysis which allows for fine-grained control on the relative complexity (c...
December 12, 2015
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of bi...
June 8, 2020
We define a notion of complexity, which quantifies the nonlinearity of the computation of a neural network, as well as a complementary measure of the effective dimension of feature representations. We investigate these observables both for trained networks for various datasets as well as explore their dynamics during training, uncovering in particular power law scaling. These observables can be understood in a dual way as uncovering hidden internal structure of the datasets t...
July 2, 2013
Polynomial threshold gates are basic processing units of an artificial neural network. When the input vectors are binary vectors, these gates correspond to Boolean functions and can be analyzed via their polynomial representations. In practical applications, it is desirable to find a polynomial representation with the smallest number of terms possible, in order to use the least possible number of input lines to the unit under consideration. For this purpose, instead of an exa...
October 8, 2024
The Boolean Nearest Neighbor (BNN) representation of Boolean functions was recently introduced by Hajnal, Liu and Turan. A BNN representation of $f$ is a pair $(P,N)$ of sets of Boolean vectors (called positive and negative prototypes) where $f(x)=1$ for every positive prototype $x \in P$, $f(x)=0$ for all every negative prototype $x \in N$, and the value $f(x)$ for $x \not\in P \cup N$ is determined by the type of the closest prototype. The main aim of this paper is to deter...