February 12, 2002
Similar papers 2
December 29, 2009
Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a su...
August 15, 2019
Consider stochastic models for the spread of an infection in a structured community, where this structured community is itself described by a random network model. Some common network models and transmission models are defined and large population proporties of them are presented. Focus is then shifted to statistical methodology: what can be estimated and how, depending on the underlying network, transmission model and the available data? This survey paper discusses several d...
August 6, 2018
Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet, and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many of the properties of real-world networks such as powerlaw degree distributions and the small-world property. To meet these challenges, we introduce the \textit{Directed} Random Geometric Graph (DRGG) model, which is an extension o...
March 25, 2003
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment...
March 10, 2003
We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study SIR-type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In additi...
September 18, 2018
Large real-life complex networks are often modeled by various random graph constructions and hundreds of further references therein. In many cases it is not at all clear how the modeling strength of differently generated random graph model classes relate to each other. We would like to systematically investigate such issues. Our approach was originally motivated to capture properties of the random network topology of wireless communication networks. We started some investigat...
August 3, 2018
Random graph models are important constructs for data analytic applications as well as pure mathematical developments, as they provide capabilities for network synthesis and principled analysis. Several models have been developed with the aim of faithfully preserving important graph metrics and substructures. With the goal of capturing degree distribution, clustering coefficient, and communities in a single random graph model, we propose a new model to address shortcomings in...
October 29, 2012
Nowadays, exponential random graphs (ERGs) are among the most widely-studied network models. Different analytical and numerical techniques for ERG have been developed that resulted in the well-established theory with true predictive power. An excellent basic discussion of exponential random graphs addressed to social science students and researchers is given in [Anderson et al., 1999][Robins et al., 2007]. This essay is intentionally designed to be more theoretical in compari...
May 27, 2015
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the $dk$-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network propertie...
December 11, 2007
We consider a variant of so called power-law random graph. A sequence of expected degrees corresponds to a power-law degree distribution with finite mean and infinite variance. In previous works the asymptotic picture with number of nodes limiting to infinity has been considered. It was found that an interesting structure appears. It has resemblance with such graphs like the Internet graph. Some simulations have shown that a finite sized variant has similar properties as well...