February 3, 2024
Despite centuries of work on containment and mitigation strategies, infectious diseases are still a major problem facing humanity. This work is concerned with simulating heterogeneous contact structures and understanding how the structure of the underlying network affects the spread of the disease. For example, it has been empirically demonstrated and validated that scale free networks do not have an epidemic threshold. Understanding the relationship between network structure...
June 25, 2015
We derive properties of Latent Variable Models for networks, a broad class of models that includes the widely-used Latent Position Models. These include the average degree distribution, clustering coefficient, average path length and degree correlations. We introduce the Gaussian Latent Position Model, and derive analytic expressions and asymptotic approximations for its network properties. We pay particular attention to one special case, the Gaussian Latent Position Models w...
May 25, 2004
We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We giv...
May 10, 2010
Traditional random graph models of networks generate networks that are locally tree-like, meaning that all local neighborhoods take the form of trees. In this respect such models are highly unrealistic, most real networks having strongly non-tree-like neighborhoods that contain short loops, cliques, or other biconnected subgraphs. In this paper we propose and analyze a new class of random graph models that incorporates general subgraphs, allowing for non-tree-like neighborhoo...
May 6, 2014
Random graph models have played a dominant role in the theoretical study of networked systems. The Poisson random graph of Erdos and Renyi, in particular, as well as the so-called configuration model, have served as the starting point for numerous calculations. In this paper we describe another large class of random graph models, which we call equitable random graphs and which are flexible enough to represent networks with diverse degree distributions and many nontrivial type...
August 29, 2022
Complex network theory crucially depends on the assumptions made about the degree distribution, while fitting degree distributions to network data is challenging, in particular for scale-free networks with power-law degrees. We present a robust assessment of complex networks that does not depend on the entire degree distribution, but only on its mean, range and dispersion: summary statistics that are easy to obtain for most real-world networks. By solving several semi-infinit...
July 18, 2000
Recent work on the internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes. Such deletions include, for example, the failure of internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process, but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real w...
June 6, 2001
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the f...
February 8, 2024
Random graph models are widely used to understand network properties and graph algorithms. Key to such analyses are the different parameters of each model, which affect various network features, such as its size, clustering, or degree distribution. The exact effect of the parameters on these features is not well understood, mainly because we lack tools to thoroughly investigate this relation. Moreover, the parameters cannot be considered in isolation, as changing one affects ...
December 9, 2016
Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models' ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and ...